• 제목/요약/키워드: Deep Neural Network)

검색결과 2,092건 처리시간 0.029초

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

Machine Learning and Deep Learning Models to Predict Income and Employment with Busan's Strategic Industry and Export (머신러닝과 딥러닝 기법을 이용한 부산 전략산업과 수출에 의한 고용과 소득 예측)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • 제46권1호
    • /
    • pp.169-187
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning and deep learning methods to forecast the income and employment using the strategic industries as well as investment, export, and exchange rates. The decision tree, artificial neural network, support vector machine, and deep learning models were used to forecast the income and employment in Busan. The following were the main findings of the comparison of their predictive abilities. First, the decision tree models predict the income and employment well. The forecasting values for the income and employment appeared somewhat differently according to the depth of decision trees and several conditions of strategic industries as well as investment, export, and exchange rates. Second, since the artificial neural network models show that the coefficients are somewhat low and RMSE are somewhat high, these models are not good forecasting the income and employment. Third, the support vector machine models show the high predictive power with the high coefficients of determination and low RMSE. Fourth, the deep neural network models show the higher predictive power with appropriate epochs and batch sizes. Thus, since the machine learning and deep learning models can predict the employment well, we need to adopt the machine learning and deep learning models to forecast the income and employment.

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.

A study on Gaussian mixture model deep neural network hybrid-based feature compensation for robust speech recognition in noisy environments (잡음 환경에 효과적인 음성 인식을 위한 Gaussian mixture model deep neural network 하이브리드 기반의 특징 보상)

  • Yoon, Ki-mu;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • 제37권6호
    • /
    • pp.506-511
    • /
    • 2018
  • This paper proposes an GMM(Gaussian Mixture Model)-DNN(Deep Neural Network) hybrid-based feature compensation method for effective speech recognition in noisy environments. In the proposed algorithm, the posterior probability for the conventional GMM-based feature compensation method is calculated using DNN. The experimental results using the Aurora 2.0 framework and database demonstrate that the proposed GMM-DNN hybrid-based feature compensation method shows more effective in Known and Unknown noisy environments compared to the GMM-based method. In particular, the experiments of the Unknown environments show 9.13 % of relative improvement in the average of WER (Word Error Rate) and considerable improvements in lower SNR (Signal to Noise Ratio) conditions such as 0 and 5 dB SNR.

Training Network Design Based on Convolution Neural Network for Object Classification in few class problem (소 부류 객체 분류를 위한 CNN기반 학습망 설계)

  • Lim, Su-chang;Kim, Seung-Hyun;Kim, Yeon-Ho;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제21권1호
    • /
    • pp.144-150
    • /
    • 2017
  • Recently, deep learning is used for intelligent processing and accuracy improvement of data. It is formed calculation model composed of multi data processing layer that train the data representation through an abstraction of the various levels. A category of deep learning, convolution neural network is utilized in various research fields, which are human pose estimation, face recognition, image classification, speech recognition. When using the deep layer and lots of class, CNN that show a good performance on image classification obtain higher classification rate but occur the overfitting problem, when using a few data. So, we design the training network based on convolution neural network and trained our image data set for object classification in few class problem. The experiment show the higher classification rate of 7.06% in average than the previous networks designed to classify the object in 1000 class problem.

Flow based Network Traffic Classification Using Recurrent Neural Network (Recurrent Neural Network을 이용한 플로우 기반 네트워크 트래픽 분류)

  • Lim, Hyun-Kyo;Kim, Ju-Bong;Heo, Joo-Seong;Kwon, Do-Hyung;Han, Youn-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.835-838
    • /
    • 2017
  • 최근 다양한 네트워크 서비스와 응용들이 생겨나면서, 네트워크상에 다양한 네트워크 트래픽이 발생하고 있다. 이로 인하여, 네트워크에 불필요한 네트워크 트래픽도 많이 발생하면서 네트워크 성능에 저하를 발생 시키고 있다. 따라서, 네트워크 트래픽 분류를 통하여 빠르게 제공되어야 하는 네트워크 서비스를 빠르게 전송 할 수 있도록 각 네트워크 트래픽마다의 분류가 필요하다. 본 논문에서는 Deep Learning 기법 중 Recurrent Neural Network를 이용한 플로우 기반의 네트워크 트래픽 분류를 제안한다. Deep Learning은 네트워크 관리자의 개입 없이 네트워크 트래픽 분류를 할 수 있으며, 이를 위하여 네트워크 트래픽을 Recurrent Neural Network에 적합한 데이터 형태로 변환한다. 변환된 데이터 세트를 이용하여 훈련시킴으로써 네트워크 트래픽을 분류한다. 본 논문에서는 훈련시킨 결과를 토대로 비교 분석 및 평가를 진행한다.

Development of Deep Learning Models for Multi-class Sentiment Analysis (딥러닝 기반의 다범주 감성분석 모델 개발)

  • Syaekhoni, M. Alex;Seo, Sang Hyun;Kwon, Young S.
    • Journal of Information Technology Services
    • /
    • 제16권4호
    • /
    • pp.149-160
    • /
    • 2017
  • Sentiment analysis is the process of determining whether a piece of document, text or conversation is positive, negative, neural or other emotion. Sentiment analysis has been applied for several real-world applications, such as chatbot. In the last five years, the practical use of the chatbot has been prevailing in many field of industry. In the chatbot applications, to recognize the user emotion, sentiment analysis must be performed in advance in order to understand the intent of speakers. The specific emotion is more than describing positive or negative sentences. In light of this context, we propose deep learning models for conducting multi-class sentiment analysis for identifying speaker's emotion which is categorized to be joy, fear, guilt, sad, shame, disgust, and anger. Thus, we develop convolutional neural network (CNN), long short term memory (LSTM), and multi-layer neural network models, as deep neural networks models, for detecting emotion in a sentence. In addition, word embedding process was also applied in our research. In our experiments, we have found that long short term memory (LSTM) model performs best compared to convolutional neural networks and multi-layer neural networks. Moreover, we also show the practical applicability of the deep learning models to the sentiment analysis for chatbot.

Korean and English Sentiment Analysis Using the Deep Learning

  • Ramadhani, Adyan Marendra;Choi, Hyung Rim;Lim, Seong Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제23권3호
    • /
    • pp.59-71
    • /
    • 2018
  • Social media has immense popularity among all services today. Data from social network services (SNSs) can be used for various objectives, such as text prediction or sentiment analysis. There is a great deal of Korean and English data on social media that can be used for sentiment analysis, but handling such huge amounts of unstructured data presents a difficult task. Machine learning is needed to handle such huge amounts of data. This research focuses on predicting Korean and English sentiment using deep forward neural network with a deep learning architecture and compares it with other methods, such as LDA MLP and GENSIM, using logistic regression. The research findings indicate an approximately 75% accuracy rate when predicting sentiments using DNN, with a latent Dirichelet allocation (LDA) prediction accuracy rate of approximately 81%, with the corpus being approximately 64% accurate between English and Korean.

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • 제38권6_2호
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.