• 제목/요약/키워드: Deep Networks

Search Result 1,173, Processing Time 0.023 seconds

Image Denoising Via Structure-Aware Deep Convolutional Neural Networks (구조 인식 심층 합성곱 신경망 기반의 영상 잡음 제거)

  • Park, Gi-Tae;Son, Chang-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.85-95
    • /
    • 2018
  • With the popularity of smartphones, most peoples have been using mobile cameras to capture photographs. However, due to insufficient amount of lights in a low lighting condition, unwanted noises can be generated during image acquisition. To remove the noise, a method of using deep convolutional neural networks is introduced. However, this method still lacks the ability to describe textures and edges, even though it has made significant progress in terms of visual quality performance. Therefore, in this paper, the HOG (Histogram of Oriented Gradients) images that contain information about edge orientations are used. More specifically, a method of learning deep convolutional neural networks is proposed by stacking noise and HOG images into an input tensor. Experiment results confirm that the proposed method not only can obtain excellent result in visual quality evaluations, compared to conventional methods, but also enable textures and edges to be improved visually.

A Tensor Space Model based Deep Neural Network for Automated Text Classification (자동문서분류를 위한 텐서공간모델 기반 심층 신경망)

  • Lim, Pu-reum;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.3-13
    • /
    • 2018
  • Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.

TSSN: A Deep Learning Architecture for Rainfall Depth Recognition from Surveillance Videos (TSSN: 감시 영상의 강우량 인식을 위한 심층 신경망 구조)

  • Li, Zhun;Hyeon, Jonghwan;Choi, Ho-Jin
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.87-97
    • /
    • 2018
  • Rainfall depth is an important meteorological information. Generally, high spatial resolution rainfall data such as road-level rainfall data are more beneficial. However, it is expensive to set up sufficient Automatic Weather Systems to get the road-level rainfall data. In this paper, we proposed to use deep learning to recognize rainfall depth from road surveillance videos. To achieve this goal, we collected two new video datasets, and proposed a new deep learning architecture named Temporal and Spatial Segment Networks (TSSN) for rainfall depth recognition. Under TSSN, the experimental results show that the combination of the video frame and the differential frame is a superior solution for the rainfall depth recognition. Also, the proposed TSSN architecture outperforms other architectures implemented in this paper.

GRADIENTS IN A DEEP NEURAL NETWORK AND THEIR PYTHON IMPLEMENTATIONS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.131-146
    • /
    • 2022
  • This is an expository article about the gradients in deep neural network. It is hard to find a place where gradients in a deep neural network are dealt in details in a systematic and mathematical way. We review and compute the gradients and Jacobians to derive formulas for gradients which appear in the backpropagation and implement them in vectorized forms in Python.

A survey on parallel training algorithms for deep neural networks (심층 신경망 병렬 학습 방법 연구 동향)

  • Yook, Dongsuk;Lee, Hyowon;Yoo, In-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.505-514
    • /
    • 2020
  • Since a large amount of training data is typically needed to train Deep Neural Networks (DNNs), a parallel training approach is required to train the DNNs. The Stochastic Gradient Descent (SGD) algorithm is one of the most widely used methods to train the DNNs. However, since the SGD is an inherently sequential process, it requires some sort of approximation schemes to parallelize the SGD algorithm. In this paper, we review various efforts on parallelizing the SGD algorithm, and analyze the computational overhead, communication overhead, and the effects of the approximations.

Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition (자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템)

  • Kim, Kyeong-Tae;Choi, Jae-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2018
  • In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).

Multi-scale Attention and Deep Ensemble-Based Animal Skin Lesions Classification (다중 스케일 어텐션과 심층 앙상블 기반 동물 피부 병변 분류 기법)

  • Kwak, Min Ho;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1212-1223
    • /
    • 2022
  • Skin lesions are common diseases that range from skin rashes to skin cancer, which can lead to death. Note that early diagnosis of skin diseases can be important because early diagnosis of skin diseases considerably can reduce the course of treatment and the harmful effect of the disease. Recently, the development of computer-aided diagnosis (CAD) systems based on artificial intelligence has been actively made for the early diagnosis of skin diseases. In a typical CAD system, the accurate classification of skin lesion types is of great importance for improving the diagnosis performance. Motivated by this, we propose a novel deep ensemble classification with multi-scale attention networks. The proposed deep ensemble networks are jointly trained using a single loss function in an end-to-end manner. In addition, the proposed deep ensemble network is equipped with a multi-scale attention mechanism and segmentation information of the original skin input image, which improves the classification performance. To demonstrate our method, the publicly available human skin disease dataset (HAM 10000) and the private animal skin lesion dataset were used for the evaluation. Experiment results showed that the proposed methods can achieve 97.8% and 81% accuracy on each HAM10000 and animal skin lesion dataset. This research work would be useful for developing a more reliable CAD system which helps doctors early diagnose skin diseases.

Audio Event Classification Using Deep Neural Networks (깊은 신경망을 이용한 오디오 이벤트 분류)

  • Lim, Minkyu;Lee, Donghyun;Kim, Kwang-Ho;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • This paper proposes an audio event classification method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate event probabilities of ten audio events (dog barks, engine idling, and so on) for each frame. For each frame, mel scale filter bank features of its consecutive frames are used as the input vector of the FFNN. These event probabilities are accumulated for the events and the classification result is determined as the event with the highest accumulated probability. For the same dataset, the best accuracy of previous studies was reported as about 70% when the Support Vector Machine (SVM) was applied. The best accuracy of the proposed method achieves as 79.23% for the UrbanSound8K dataset when 80 mel scale filter bank features each from 7 consecutive frames (in total 560) were implemented as the input vector for the FFNN with two hidden layers and 2,000 neurons per hidden layer. In this configuration, the rectified linear unit was suggested as its activation function.

Voice Activity Detection based on DBN using the Likelihood Ratio (우도비를 이용한 DBN 기반의 음성 검출기)

  • Kim, S.K.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • In this paper, we propose a novel scheme to improve the performance of a voice activity detection(VAD) which is based on the deep belief networks(DBN) with the likelihood ratio(LR). The proposed algorithm applies the DBN learning method which is trained in order to minimize the probability of detection error instead of the conventional decision rule using geometric mean. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithm in various noise environments.

  • PDF