• 제목/요약/키워드: Deep Networks

검색결과 1,173건 처리시간 0.025초

Latent Keyphrase Extraction Using Deep Belief Networks

  • Jo, Taemin;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.153-158
    • /
    • 2015
  • Nowadays, automatic keyphrase extraction is considered to be an important task. Most of the previous studies focused only on selecting keyphrases within the body of input documents. These studies overlooked latent keyphrases that did not appear in documents. In addition, a small number of studies on latent keyphrase extraction methods had some structural limitations. Although latent keyphrases do not appear in documents, they can still undertake an important role in text mining because they link meaningful concepts or contents of documents and can be utilized in short articles such as social network service, which rarely have explicit keyphrases. In this paper, we propose a new approach that selects qualified latent keyphrases from input documents and overcomes some structural limitations by using deep belief networks in a supervised manner. The main idea of this approach is to capture the intrinsic representations of documents and extract eligible latent keyphrases by using them. Our experimental results showed that latent keyphrases were successfully extracted using our proposed method.

Single Image Super Resolution Reconstruction Based on Recursive Residual Convolutional Neural Network

  • Cao, Shuyi;Wee, Seungwoo;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.98-101
    • /
    • 2019
  • At present, deep convolutional neural networks have made a very important contribution in single-image super-resolution. Through the learning of the neural networks, the features of input images are transformed and combined to establish a nonlinear mapping of low-resolution images to high-resolution images. Some previous methods are difficult to train and take up a lot of memory. In this paper, we proposed a simple and compact deep recursive residual network learning the features for single image super resolution. Global residual learning and local residual learning are used to reduce the problems of training deep neural networks. And the recursive structure controls the number of parameters to save memory. Experimental results show that the proposed method improved image qualities that occur in previous methods.

  • PDF

Comparison of Hyper-Parameter Optimization Methods for Deep Neural Networks

  • Kim, Ho-Chan;Kang, Min-Jae
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.969-974
    • /
    • 2020
  • Research into hyper parameter optimization (HPO) has recently revived with interest in models containing many hyper parameters, such as deep neural networks. In this paper, we introduce the most widely used HPO methods, such as grid search, random search, and Bayesian optimization, and investigate their characteristics through experiments. The MNIST data set is used to compare results in experiments to find the best method that can be used to achieve higher accuracy in a relatively short time simulation. The learning rate and weight decay have been chosen for this experiment because these are the commonly used parameters in this kind of experiment.

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.

딥러닝 기반 침수 수위 예측: 미국 텍사스 트리니티강 사례연구 (Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States)

  • 트란 광 카이;송사광
    • 정보과학회 논문지
    • /
    • 제44권6호
    • /
    • pp.607-612
    • /
    • 2017
  • 도시에서 홍수 피해를 방지하기 위한 침수를 예측하기 위해 본 논문에서는 딥러닝(Deep Learning) 기법을 적용한다. 딥러닝 기법 중 시계열 데이터 분석에 적합한 Recurrent Neural Networks (RNNs)을 활용하여 강의 수위 관측 데이터를 학습하고 침수 가능성을 예측하였다. 예측 정확도 검증을 위해 사용한 데이터는 미국의 트리니티강의 데이터로, 학습을 위해 2013 년부터 2015 년까지 데이터를 사용하였고 평가 데이터로는 2016 년 데이터를 사용하였다. 입력은 16개의 레코드로 구성된 15분단위의 시계열 데이터를 사용하였고, 출력으로는 30분과 60분 후의 강의 수위 예측 정보이다. 실험에 사용한 딥러닝 모델들은 표준 RNN, RNN-BPTT(Back Propagation Through Time), LSTM(Long Short-Term Memory)을 사용했는데, 그 중 LSTM의 NE(Nash Efficiency)가 0.98을 넘는 정확도로 기존 연구에 비해 매우 높은 성능 향상을 보였고, 표준 RNN과 RNN-BPTT에 비해서도 좋은 성능을 보였다.

심층신경망을 이용한 PCB 부품의 인쇄문자 인식 (Recognition of Characters Printed on PCB Components Using Deep Neural Networks)

  • 조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.6-10
    • /
    • 2021
  • Recognition of characters printed or marked on the PCB components from images captured using cameras is an important task in PCB components inspection systems. Previous optical character recognition (OCR) of PCB components typically consists of two stages: character segmentation and classification of each segmented character. However, character segmentation often fails due to corrupted characters, low image contrast, etc. Thus, OCR without character segmentation is desirable and increasingly used via deep neural networks. Typical implementation based on deep neural nets without character segmentation includes convolutional neural network followed by recurrent neural network (RNN). However, one disadvantage of this approach is slow execution due to RNN layers. LPRNet is a segmentation-free character recognition network with excellent accuracy proved in license plate recognition. LPRNet uses a wide convolution instead of RNN, thus enabling fast inference. In this paper, LPRNet was adapted for recognizing characters printed on PCB components with fast execution and high accuracy. Initial training with synthetic images followed by fine-tuning on real text images yielded accurate recognition. This net can be further optimized on Intel CPU using OpenVINO tool kit. The optimized version of the network can be run in real-time faster than even GPU.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

Toward Practical Augmentation of Raman Spectra for Deep Learning Classification of Contamination in HDD

  • Seksan Laitrakun;Somrudee Deepaisarn;Sarun Gulyanon;Chayud Srisumarnk;Nattapol Chiewnawintawat;Angkoon Angkoonsawaengsuk;Pakorn Opaprakasit;Jirawan Jindakaew;Narisara Jaikaew
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.208-215
    • /
    • 2023
  • Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.

Estimation of tomato maturity as a continuous index using deep neural networks

  • Taehyeong Kim;Dae-Hyun Lee;Seung-Woo Kang;Soo-Hyun Cho;Kyoung-Chul Kim
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.837-845
    • /
    • 2022
  • In this study, tomato maturity was estimated based on deep learning for a harvesting robot. Tomato images were obtained using a RGB camera installed on a monitoring robot, which was developed previously, and the samples were cropped to 128 × 128 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the mean-variance loss was used to learn implicitly the distribution of the data features by class. In the test stage, the tomato maturity was estimated as a continuous index, which has a range of 0 to 1, by calculating the expected class value. The results show that the F1-score of the classification was approximately 0.94, and the performance was similar to that of a deep learning-based classification task in the agriculture field. In addition, it was possible to estimate the distribution in each maturity stage. From the results, it was found that our approach can not only classify the discrete maturation stages of the tomatoes but also can estimate the continuous maturity.

단백질 이차 구조 예측을 위한 합성곱 신경망의 구조 (Architectures of Convolutional Neural Networks for the Prediction of Protein Secondary Structures)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.728-733
    • /
    • 2018
  • 단백질을 구성하는 아미노산의 서열 정보만으로 단백질 이차 구조를 예측하기 위하여 심층 학습이 활발히 연구되고 있다. 본 논문에서는 단백질 이차 구조를 예측하기 위하여 다양한 구조의 합성곱 신경망의 성능을 비교하였다. 단백질 이차 구조의 예측에 적합한 신경망의 층의 깊이를 알아내기 위하여 층의 개수에 따른 성능을 조사하였다. 또한 이미지 분류 분야의 많은 방법들이 기반 하는 GoogLeNet과 ResNet의 구조를 적용하였는데, 이러한 방법은 입력 자료에서 다양한 특성을 추출하거나, 깊은 층을 사용하여도 학습과정에서 그래디언트 전달을 원활하게 한다. 합성곱 신경망의 여러 구조를 단백질 자료의 특성에 적합하게 변경하여 성능을 향상시켰다.