• Title/Summary/Keyword: Deep Learning based System

Search Result 1,194, Processing Time 0.029 seconds

GAN-based camouflage pattern generation parameter optimization system for improving assimilation rate with environment (야생 환경과의 동화율 개선을 위한 GAN 알고리즘 기반 위장 패턴 생성 파라미터 최적화 시스템)

  • Park, JunHyeok;Park, Seungmin;Cho, Dae-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.511-512
    • /
    • 2022
  • 동물무늬는 서식지에 따라 야생에서 천적으로부터 살아남을 수 있는 중요한 역할을 한다. 동물무늬의 역할 중 하나인 자연과 야생 환경에서 천적의 눈을 피해 위장하는 기능이 있기 때문인데 본 논문에서는 기존 위장무늬의 개선을 위한 GAN 알고리즘 기반 위장 패턴 생성모델을 제안한다. 이 모델은 단순히 색상만을 사용하여 위장무늬의 윤곽선을 Blur 처리를 해서 사람의 관측을 흐리게 만드는 기존의 모델의 단순함을 보완하여 GAN 알고리즘의 활용기술인 Deep Dream을 활용하여 경사 상승법을 통해 특정 층의 필터 값을 조절하여 원하는 부분에 대한 구분되는 패턴을 생성할 수 있어 색뿐만 아니라 위장의 기능이 있는 동물무늬와 섞어 자연과 야생 환경에서 더욱 동화율이 높아진 위장 패턴을 생성하고자 한다.

  • PDF

Performance Comparison of State-of-the-Art Vocoder Technology Based on Deep Learning in a Korean TTS System (한국어 TTS 시스템에서 딥러닝 기반 최첨단 보코더 기술 성능 비교)

  • Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.509-514
    • /
    • 2020
  • The conventional TTS system consists of several modules, including text preprocessing, parsing analysis, grapheme-to-phoneme conversion, boundary analysis, prosody control, acoustic feature generation by acoustic model, and synthesized speech generation. But TTS system with deep learning is composed of Text2Mel process that generates spectrogram from text, and vocoder that synthesizes speech signals from spectrogram. In this paper, for the optimal Korean TTS system construction we apply Tacotron2 to Tex2Mel process, and as a vocoder we introduce the methods such as WaveNet, WaveRNN, and WaveGlow, and implement them to verify and compare their performance. Experimental results show that WaveNet has the highest MOS and the trained model is hundreds of megabytes in size, but the synthesis time is about 50 times the real time. WaveRNN shows MOS performance similar to that of WaveNet and the model size is several tens of megabytes, but this method also cannot be processed in real time. WaveGlow can handle real-time processing, but the model is several GB in size and MOS is the worst of the three vocoders. From the results of this study, the reference criteria for selecting the appropriate method according to the hardware environment in the field of applying the TTS system are presented in this paper.

Presentation Attacks in Palmprint Recognition Systems

  • Sun, Yue;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.

Untact Face Recognition System Based on Super-resolution in Low-Resolution Images (초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템)

  • Bae, Hyeon Bin;Kwon, Oh Seol
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

A Review of AI-based Automobile Accident Prevention Systems (인공지능 기반의 자동차사고 감지 시스템 적용 사례 분석)

  • Choi, Jae Gyeong;Kong, Chan Woo;Lim, Sunghoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • Artificial intelligence (AI) has been applied to most industries by enhancing automation and contributing greatly to efficient processes and high-quality production. This research analyzes the applications of AI-based automobile accident prevention systems. It deals with AI-based collision prevention systems that learn information from various sensors attached to cars and AI-based accident detection systems that automatically report accidents to the control center in the event of a collision. Based on the literature review, technological and institutional changes are taking place at the national levels, which recognize the effectiveness of the systems. In addition, start-ups at home and abroad as well as major car manufacturers are in the process of commercializing auto parts equipped with AI-based collision prevention technology.

Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household (가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현)

  • Lee, JuHui;Lee, KangYoon
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 2021
  • Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.

Cat Monitoring and Disease Diagnosis System based on Deep Learning (딥러닝 기반의 반려묘 모니터링 및 질병 진단 시스템)

  • Choi, Yoona;Chae, Heechan;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.233-244
    • /
    • 2021
  • Recently, several ICT-based cat studies have produced some successful results, according to academic and industry sources. However, research on the level of simply identifying the cat's condition, such as the behavior and sound classification of cats based on images and sound signals, has yet to be found. In this paper, based on the veterinary scientific knowledge of cats, a practical and academic cat monitoring and disease diagnosis system is proposed to monitor the health status of the cat 24 hours a day by automatically categorizing and analyzing the behavior of the cat with location information using LSTM with a beacon sensor and a raspberry pie that can be built at low cost. Validity of the proposed system is verified through experimentation with cats in actual custody (the accuracy of the cat behavior classification and location identification was 96.3% and 92.7% on average, respectively). Furthermore, a rule-based disease analysis system based on the veterinary knowledge was designed and implemented so that owners can check whether or not the cats have diseases at home (or can be used as an auxiliary tool for diagnosis by a pet veterinarian).

Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function (가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템)

  • Donghyeon Kim;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.6-13
    • /
    • 2024
  • This paper proposes an approach to detect abnormal data in automotive controller area network (CAN) using an unsupervised learning model, i.e. autoencoder and Gaussian kernel density estimation function. The proposed autoencoder model is trained with only message ID of CAN data frames. Afterwards, by employing the Gaussian kernel density estimation function, it effectively detects abnormal data based on the trained model characterized by the optimally determined number of frames and a loss threshold. It was verified and evaluated using four types of attack data, i.e. DoS attacks, gear spoofing attacks, RPM spoofing attacks, and fuzzy attacks. Compared with conventional unsupervised learning-based models, it has achieved over 99% detection performance across all evaluation metrics.

Deep Learning Model for Mental Fatigue Discrimination System based on EEG (뇌파기반 정신적 피로 판별을 위한 딥러닝 모델)

  • Seo, Ssang-Hee
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.295-301
    • /
    • 2021
  • Individual mental fatigue not only reduces cognitive ability and work performance, but also becomes a major factor in large and small accidents occurring in daily life. In this paper, a CNN model for EEG-based mental fatigue discrimination was proposed. To this end, EEG in the resting state and task state were collected and applied to the proposed CNN model, and then the model performance was analyzed. All subjects who participated in the experiment were right-handed male students attending university, with and average age of 25.5 years. Spectral analysis was performed on the measured EEG in each state, and the performance of the CNN model was compared and analyzed using the raw EEG, absolute power, and relative power as input data of the CNN model. As a result, the relative power of the occipital lobe position in the alpha band showed the best performance. The model accuracy is 85.6% for training data, 78.5% for validation, and 95.7% for test data. The proposed model can be applied to the development of an automated system for mental fatigue detection.