• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.033 seconds

IoB Based Scenario Application of Health and Medical AI Platform (보건의료 AI 플랫폼의 IoB 기반 시나리오 적용)

  • Eun-Suab, Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1283-1292
    • /
    • 2022
  • At present, several artificial intelligence projects in the healthcare and medical field are competing with each other, and the interfaces between the systems lack unified specifications. Thus, this study presents an artificial intelligence platform for healthcare and medical fields which adopts the deep learning technology to provide algorithms, models and service support for the health and medical enterprise applications. The suggested platform can provide a large number of heterogeneous data processing, intelligent services, model managements, typical application scenarios, and other services for different types of business. In connection with the suggested platform application, we represents a medical service which is corresponding to the trusted and comprehensible tracking and analyzing patient behavior system for Health and Medical treatment using Internet of Behavior concept.

An Integrated Accurate-Secure Heart Disease Prediction (IAS) Model using Cryptographic and Machine Learning Methods

  • Syed Anwar Hussainy F;Senthil Kumar Thillaigovindan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.504-519
    • /
    • 2023
  • Heart disease is becoming the top reason of death all around the world. Diagnosing cardiac illness is a difficult endeavor that necessitates both expertise and extensive knowledge. Machine learning (ML) is becoming gradually more important in the medical field. Most of the works have concentrated on the prediction of cardiac disease, however the precision of the results is minimal, and data integrity is uncertain. To solve these difficulties, this research creates an Integrated Accurate-Secure Heart Disease Prediction (IAS) Model based on Deep Convolutional Neural Networks. Heart-related medical data is collected and pre-processed. Secondly, feature extraction is processed with two factors, from signals and acquired data, which are further trained for classification. The Deep Convolutional Neural Networks (DCNN) is used to categorize received sensor data as normal or abnormal. Furthermore, the results are safeguarded by implementing an integrity validation mechanism based on the hash algorithm. The system's performance is evaluated by comparing the proposed to existing models. The results explain that the proposed model-based cardiac disease diagnosis model surpasses previous techniques. The proposed method demonstrates that it attains accuracy of 98.5 % for the maximum amount of records, which is higher than available classifiers.

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

Transfer Learning Backbone Network Model Analysis for Human Activity Classification Using Imagery (영상기반 인체행위분류를 위한 전이학습 중추네트워크모델 분석)

  • Kim, Jong-Hwan;Ryu, Junyeul
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • Recently, research to classify human activity using imagery has been actively conducted for the purpose of crime prevention and facility safety in public places and facilities. In order to improve the performance of human activity classification, most studies have applied deep learning based-transfer learning. However, despite the increase in the number of backbone network models that are the basis of deep learning as well as the diversification of architectures, research on finding a backbone network model suitable for the purpose of operation is insufficient due to the atmosphere of using a certain model. Thus, this study applies the transfer learning into recently developed deep learning backborn network models to build an intelligent system that classifies human activity using imagery. For this, 12 types of active and high-contact human activities based on sports, not basic human behaviors, were determined and 7,200 images were collected. After 20 epochs of transfer learning were equally applied to five backbone network models, we quantitatively analyzed them to find the best backbone network model for human activity classification in terms of learning process and resultant performance. As a result, XceptionNet model demonstrated 0.99 and 0.91 in training and validation accuracy, 0.96 and 0.91 in Top 2 accuracy and average precision, 1,566 sec in train process time and 260.4MB in model memory size. It was confirmed that the performance of XceptionNet was higher than that of other models.

A Development of Road Crack Detection System Using Deep Learning-based Segmentation and Object Detection (딥러닝 기반의 분할과 객체탐지를 활용한 도로균열 탐지시스템 개발)

  • Ha, Jongwoo;Park, Kyongwon;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.93-106
    • /
    • 2021
  • Many recent studies on deep learning-based road crack detection have shown significantly more improved performances than previous works using algorithm-based conventional approaches. However, many deep learning-based studies are still focused on classifying the types of cracks. The classification of crack types is highly anticipated in that it can improve the crack detection process, which is currently relying on manual intervention. However, it is essential to calculate the severity of the cracks as well as identifying the type of cracks in actual pavement maintenance planning, but studies related to road crack detection have not progressed enough to automated calculation of the severity of cracks. In order to calculate the severity of the crack, the type of crack and the area of the crack in the image must be identified together. This study deals with a method of using Mobilenet-SSD that is deep learning-based object detection techniques to effectively automate the simultaneous detection of crack types and crack areas. To improve the accuracy of object-detection for road cracks, several experiments were conducted to combine the U-Net for automatic segmentation of input image and object-detection model, and the results were summarized. As a result, image masking with U-Net is able to maximize object-detection performance with 0.9315 mAP value. While referring the results of this study, it is expected that the automation of the crack detection functionality on pave management system can be further enhanced.

Automatic Construction of Deep Learning Training Data for High-Definition Road Maps Using Mobile Mapping System (정밀도로지도 제작을 위한 모바일매핑시스템 기반 딥러닝 학습데이터의 자동 구축)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Currently, the process of constructing a high-definition road map has a high proportion of manual labor, so there are limitations in construction time and cost. Research to automate map production with high-definition road maps using artificial intelligence is being actively conducted, but since the construction of training data for the map construction is also done manually, there is a need to automatically build training data. Therefore, in this study, after converting to images using point clouds acquired by a mobile mapping system, the road marking areas were extracted through image reclassification and overlap analysis using thresholds. Then, a methodology was proposed to automatically construct training data for deep learning data for the high-definition road map through the classification of the polygon types in the extracted regions. As a result of training 2,764 lane data constructed through the proposed methodology on a deep learning-based PointNet model, the training accuracy was 99.977%, and as a result of predicting the lanes of three color types using the trained model, the accuracy was 99.566%. Therefore, it was found that the methodology proposed in this study can efficiently produce training data for high-definition road maps, and it is believed that the map production process of road markings can also be automated.

Comparison of Korean Real-time Text-to-Speech Technology Based on Deep Learning (딥러닝 기반 한국어 실시간 TTS 기술 비교)

  • Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.640-645
    • /
    • 2021
  • The deep learning based end-to-end TTS system consists of Text2Mel module that generates spectrogram from text, and vocoder module that synthesizes speech signals from spectrogram. Recently, by applying deep learning technology to the TTS system the intelligibility and naturalness of the synthesized speech is as improved as human vocalization. However, it has the disadvantage that the inference speed for synthesizing speech is very slow compared to the conventional method. The inference speed can be improved by applying the non-autoregressive method which can generate speech samples in parallel independent of previously generated samples. In this paper, we introduce FastSpeech, FastSpeech 2, and FastPitch as Text2Mel technology, and Parallel WaveGAN, Multi-band MelGAN, and WaveGlow as vocoder technology applying non-autoregressive method. And we implement them to verify whether it can be processed in real time. Experimental results show that by the obtained RTF all the presented methods are sufficiently capable of real-time processing. And it can be seen that the size of the learned model is about tens to hundreds of megabytes except WaveGlow, and it can be applied to the embedded environment where the memory is limited.

Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment (열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템)

  • Lee, Jeong-Hoon;Lee, Ro-Woon;Hong, Seung-Taek;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.77-83
    • /
    • 2020
  • The heat treatment facility is in a situation where the scope of application of the remote IOT system is expanding due to the harsh environment caused by high heat and long working hours among the root industries. In this heat treatment process environment, the IOT middleware is required to play a pivotal role in interpreting, managing and controlling data information of IoT devices (sensors, etc.). Until now, the system controlled by the heat treatment remotely was operated with the command of the operator's batch system without overall monitoring of the site situation. However, for the safety and precise control of the heat treatment facility, it is necessary to control various sensors and recognize the surrounding work environment. As a solution to this, the heat treatment safety support system presented in this paper proposes a support system that can detect the access of the work manpower to the heat treatment furnace through thermal image detection and operate safely when ordering work from a remote location. In addition, an OPEN CV-based deterioration analysis system using DNN deep learning network was constructed for faster and more accurate recognition than general fixed hot spot monitoring-based thermal image analysis. Through this, we would like to propose a system that can be used universally in the heat treatment environment and support the safety management specialized in the heat treatment industry.