• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.025 seconds

Reproduction of wind speed time series in a two-dimensional numerical multiple-fan wind tunnel using deep reinforcement learning

  • Qingshan Yang;Zhenzhi Luo;Ke Li;Teng Wu
    • Wind and Structures
    • /
    • v.39 no.4
    • /
    • pp.271-285
    • /
    • 2024
  • The multiple-fan wind tunnel is an important facility for reproducing target wind field. Existing control methods for the multiple-fan wind tunnel can generate wind speeds that satisfy the target statistical characteristics of a wind field (e.g., power spectrum). However, the frequency-domain features cannot well represent the nonstationary winds of extreme storms (e.g., downburst). Therefore, this study proposes a multiple-fan wind tunnel control scheme based on Deep Reinforcement Learning (DRL), which will completely transform into a data-driven closed-loop control problem, to reproduce the target wind field in the time domain. Specifically, the control scheme adopts the Deep Deterministic Policy Gradient (DDPG) paradigm in which the strong fitting ability of Deep Neural Networks (DNN) is utilized. It can establish the complex relationship between the target wind speed time series and the current control strategy in the DRL-agent. To address the fluid memory effect of the wind field, this study innovatively designs the system state and control reward to improve the reproduction performance based on historical data. To validate the performance of the model, we established a simplified flow field based on Navier Stokes equations to simulate a two-dimensional numerical multiple-fan wind tunnel environment. Using the strategy of DRL decision maker, we generated a wind speed time series with minor error from the target under low Reynolds number conditions. This is the first time that the AI methods have been used to generate target wind speed time series in a multiple-fan wind tunnel environment. The hyperparameters in the DDPG paradigm are analyzed to identify a set of optimal parameters. With these efforts, the trained DRL-agent can simultaneously reproduce the wind speed time series in multiple positions.

Cody Recommendation System Using Deep Learning and User Preferences

  • Kwak, Naejoung;Kim, Doyun;kim, Minho;kim, Jongseo;Myung, Sangha;Yoon, Youngbin;Choi, Jihye
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.321-326
    • /
    • 2019
  • As AI technology is recently introduced into various fields, it is being applied to the fashion field. This paper proposes a system for recommending cody clothes suitable for a user's selected clothes. The proposed system consists of user app, cody recommendation module, and server interworking of each module and managing database data. Cody recommendation system classifies clothing images into 80 categories composed of feature combinations, selects multiple representative reference images for each category, and selects 3 full body cordy images for each representative reference image. Cody images of the representative reference image were determined by analyzing the user's preference using Google survey app. The proposed algorithm classifies categories the clothing image selected by the user into a category, recognizes the most similar image among the classification category reference images, and transmits the linked cody images to the user's app. The proposed system uses the ResNet-50 model to categorize the input image and measures similarity using ORB and HOG features to select a reference image in the category. We test the proposed algorithm in the Android app, and the result shows that the recommended system runs well.

A Study on the Psychological Counseling AI Chatbot System based on Sentiment Analysis (감정분석 기반 심리상담 AI 챗봇 시스템에 대한 연구)

  • An, Se Hun;Jeong, Ok Ran
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.75-86
    • /
    • 2021
  • As artificial intelligence is actively studied, chatbot systems are being applied to various fields. In particular, many chatbot systems for psychological counseling have been studied that can comfort modern people. However, while most psychological counseling chatbots are studied as rule-base and deep learning-based chatbots, there are large limitations for each chatbot. To overcome the limitations of psychological counseling using such chatbots, we proposes a novel psychological counseling AI chatbot system. The proposed system consists of a GPT-2 model that generates output sentence for Korean input sentences and an Electra model that serves as sentiment analysis and anxiety cause classification, which can be provided with psychological tests and collective intelligence functions. At the same time as deep learning-based chatbots and conversations take place, sentiment analysis of input sentences simultaneously recognizes user's emotions and presents psychological tests and collective intelligence solutions to solve the limitations of psychological counseling that can only be done with chatbots. Since the role of sentiment analysis and anxiety cause classification, which are the links of each function, is important for the progression of the proposed system, we experiment the performance of those parts. We verify the novelty and accuracy of the proposed system. It also shows that the AI chatbot system can perform counseling excellently.

A vision-based system for inspection of expansion joints in concrete pavement

  • Jung Hee Lee ;bragimov Eldor ;Heungbae Gil ;Jong-Jae Lee
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.309-318
    • /
    • 2023
  • The appropriate maintenance of highway roads is critical for the safe operation of road networks and conserves maintenance costs. Multiple methods have been developed to investigate the surface of roads for various types of cracks and potholes, among other damage. Like road surface damage, the condition of expansion joints in concrete pavement is important to avoid unexpected hazardous situations. Thus, in this study, a new system is proposed for autonomous expansion joint monitoring using a vision-based system. The system consists of the following three key parts: (1) a camera-mounted vehicle, (2) indication marks on the expansion joints, and (3) a deep learning-based automatic evaluation algorithm. With paired marks indicating the expansion joints in a concrete pavement, they can be automatically detected. An inspection vehicle is equipped with an action camera that acquires images of the expansion joints in the road. You Only Look Once (YOLO) automatically detects the expansion joints with indication marks, which has a performance accuracy of 95%. The width of the detected expansion joint is calculated using an image processing algorithm. Based on the calculated width, the expansion joint is classified into the following two types: normal and dangerous. The obtained results demonstrate that the proposed system is very efficient in terms of speed and accuracy.

Courses Recommendation Algorithm Based On Performance Prediction In E-Learning

  • Koffi, Dagou Dangui Augustin Sylvain Legrand;Ouattara, Nouho;Mambe, Digrais Moise;Oumtanaga, Souleymane;ADJE, Assohoun
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.148-157
    • /
    • 2021
  • The effectiveness of recommendation systems depends on the performance of the algorithms with which these systems are designed. The quality of the algorithms themselves depends on the quality of the strategies with which they were designed. These strategies differ from author to author. Thus, designing a good recommendation system means implementing the good strategies. It's in this context that several research works have been proposed on various strategies applied to algorithms to meet the needs of recommendations. Researchers are trying indefinitely to address this objective of seeking the qualities of recommendation algorithms. In this paper, we propose a new algorithm for recommending learning items. Learner performance predictions and collaborative recommendation methods are used as strategies for this algorithm. The proposed performance prediction model is based on convolutional neural networks (CNN). The results of the performance predictions are used by the proposed recommendation algorithm. The results of the predictions obtained show the efficiency of Deep Learning compared to the k-nearest neighbor (k-NN) algorithm. The proposed recommendation algorithm improves the recommendations of the learners' learning items. This algorithm also has the particularity of dissuading learning items in the learner's profile that are deemed inadequate for his or her training.

Determination of the stage and grade of periodontitis according to the current classification of periodontal and peri-implant diseases and conditions (2018) using machine learning algorithms

  • Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.38-53
    • /
    • 2023
  • Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

A Study on Development of Collaborative Problem Solving Prediction System Based on Deep Learning: Focusing on ICT Factors (딥러닝 기반 협력적 문제 해결력 예측 시스템 개발 연구: ICT 요인을 중심으로)

  • Lee, Youngho
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.151-158
    • /
    • 2018
  • The purpose of this study is to develop a system for predicting students' collaborative problem solving ability based on the ICT factors of PISA 2015 that affect collaborative problem solving ability. The PISA 2015 computer-based collaborative problem-solving capability evaluation included 5,581 students in Korea. As a research method, correlation analysis was used to select meaningful variables. And the collaborative problem solving ability prediction model was created by using the deep learning method. As a result of the model generation, we were able to predict collaborative problem solving ability with about 95% accuracy for the test data set. Based on this model, a collaborative problem solving ability prediction system was designed and implemented. This research is expected to provide a new perspective on applying big data and artificial intelligence in decision making for ICT input and use in education.

Implementation of Finger Vein Authentication System based on High-performance CNN (고성능 CNN 기반 지정맥 인증 시스템 구현)

  • Kim, Kyeong-Rae;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.197-202
    • /
    • 2021
  • Biometric technology using finger veins is receiving a lot of attention due to its high security, convenience and accuracy. And the recent development of deep learning technology has improved the processing speed and accuracy for authentication. However, the training data is a subset of real data not in a certain order or method and the results are not constant. so the amount of data and the complexity of the artificial neural network must be considered. In this paper, the deep learning model of Inception-Resnet-v2 was used to improve the high accuracy of the finger vein recognizer and the performance of the authentication system, We compared and analyzed the performance of the deep learning model of DenseNet-201. The simulations used data from MMCBNU_6000 of Jeonbuk National University and finger vein images taken directly. There is no preprocessing for the image in the finger vein authentication system, and the results are checked through EER.

Remote Control System using Face and Gesture Recognition based on Deep Learning (딥러닝 기반의 얼굴과 제스처 인식을 활용한 원격 제어)

  • Hwang, Kitae;Lee, Jae-Moon;Jung, Inhwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.115-121
    • /
    • 2020
  • With the spread of IoT technology, various IoT applications using facial recognition are emerging. This paper describes the design and implementation of a remote control system using deep learning-based face recognition and hand gesture recognition. In general, an application system using face recognition consists of a part that takes an image in real time from a camera, a part that recognizes a face from the image, and a part that utilizes the recognized result. Raspberry PI, a single board computer that can be mounted anywhere, has been used to shoot images in real time, and face recognition software has been developed using tensorflow's FaceNet model for server computers and hand gesture recognition software using OpenCV. We classified users into three groups: Known users, Danger users, and Unknown users, and designed and implemented an application that opens automatic door locks only for Known users who have passed both face recognition and hand gestures.