• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.033 seconds

Proposal for Deep Learning based Character Recognition System by Virtual Data Generation (가상 데이터 생성을 통한 딥러닝 기반 문자인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.275-278
    • /
    • 2020
  • In this paper, we proposed a deep learning based character recognition system through virtual data generation. In order to secure the learning data that takes the largest weight in supervised learning, virtual data was created. Also, after creating virtual data, data generalization was performed to cope with various data by using augmentation parameter. Finally, the learning data composition generated data by assigning various values to augmentation parameter and font parameter. Test data for measuring the character recognition performance was constructed by cropping the text area from the actual image data. The test data was augmented considering the image distortion that may occur in real environment. Deep learning algorithm uses YOLO v3 which performs detection in real time. Inference result outputs the final detection result through post-processing.

Deep Learning-Based Automation Cyber Attack Convergence Trend Analysis Mechanism for Deep Learning-Based Security Vulnerability Analysis (사이버공격 융합 동향 분석을 위한 딥러닝 기반 보안 취약점 분석 자동화 메커니즘)

  • Kim, Jinsu;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.99-107
    • /
    • 2022
  • In the current technological society, where various technologies are converged into one and being transformed into new technologies, new cyber attacks are being made just as they keep pace with the changes in society. In particular, due to the convergence of various attacks into one, it is difficult to protect the system with only the existing security system. A lot of information is being generated to respond to such cyber attacks. However, recklessly generated vulnerability information can induce confusion by providing unnecessary information to administrators. Therefore, this paper proposes a mechanism to assist in the analysis of emerging cyberattack convergence technologies by providing differentiated vulnerability information to managers by learning documents using deep learning-based language learning models, extracting vulnerability information and classifying them according to the MITRE ATT&CK framework.

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.9-17
    • /
    • 2023
  • In this paper, we propose a one-class vibration anomaly detection system for bearing defect diagnosis. In order to reduce the economic and time loss caused by bearing failure, an accurate defect diagnosis system is essential, and deep learning-based defect diagnosis systems are widely studied to solve the problem. However, it is difficult to obtain abnormal data in the actual data collection environment for deep learning learning, which causes data bias. Therefore, a one-class classification method using only normal data is used. As a general method, the characteristics of vibration data are extracted by learning the compression and restoration process through AutoEncoder. Anomaly detection is performed by learning a one-class classifier with the extracted features. However, this method cannot efficiently extract the characteristics of the vibration data because it does not consider the frequency characteristics of the vibration data. To solve this problem, we propose an AutoEncoder model that considers the frequency characteristics of vibration data. As for classification performance, accuracy 0.910, precision 1.0, recall 0.820, and f1-score 0.901 were obtained. The network design considering the vibration characteristics confirmed better performance than existing methods.

A Study on Artificial Intelligence-based Automated Integrated Security Control System Model (인공지능 기반의 자동화된 통합보안관제시스템 모델 연구)

  • Wonsik Nam;Han-Jin Cho
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.45-52
    • /
    • 2024
  • In today's growing threat environment, rapid and effective detection and response to security events is essential. To solve these problems, many companies and organizations respond to security threats by introducing security control systems. However, existing security control systems are experiencing difficulties due to the complexity and diverse characteristics of security events. In this study, we propose an automated integrated security control system model based on artificial intelligence. It is based on deep learning, an artificial intelligence technology, and provides effective detection and processing functions for various security events. To this end, the model applies various artificial intelligence algorithms and machine learning methods to overcome the limitations of existing security control systems. The proposed model reduces the operator's workload, ensures efficient operation, and supports rapid response to security threats.

Estimation of Traffic Volume Using Deep Learning in Stereo CCTV Image (스테레오 CCTV 영상에서 딥러닝을 이용한 교통량 추정)

  • Seo, Hong Deok;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.269-279
    • /
    • 2020
  • Traffic estimation mainly involves surveying equipment such as automatic vehicle classification, vehicle detection system, toll collection system, and personnel surveys through CCTV (Closed Circuit TeleVision), but this requires a lot of manpower and cost. In this study, we proposed a method of estimating traffic volume using deep learning and stereo CCTV to overcome the limitation of not detecting the entire vehicle in case of single CCTV. COCO (Common Objects in Context) dataset was used to train deep learning models to detect vehicles, and each vehicle was detected in left and right CCTV images in real time. Then, the vehicle that could not be detected from each image was additionally detected by using affine transformation to improve the accuracy of traffic volume. Experiments were conducted separately for the normal road environment and the case of weather conditions with fog. In the normal road environment, vehicle detection improved by 6.75% and 5.92% in left and right images, respectively, than in a single CCTV image. In addition, in the foggy road environment, vehicle detection was improved by 10.79% and 12.88% in the left and right images, respectively.

A Tensor Space Model based Deep Neural Network for Automated Text Classification (자동문서분류를 위한 텐서공간모델 기반 심층 신경망)

  • Lim, Pu-reum;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.3-13
    • /
    • 2018
  • Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.

HYBRID DATA SET GENERATION METHOD FOR COMPUTER VISION-BASED DEFECT DETECTION IN BUILDING CONSTRUCTION

  • Seung-mo Choi;Heesung Cha;Bo-sik, Son
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.311-318
    • /
    • 2024
  • Quality control in construction projects necessitates the detection of defects during construction. Currently, this task is performed manually by site supervisors. This manual process is inefficient, labor-intensive, and prone to human error, potentially leading to decreased productivity. To address this issue, research has been conducted to automate defect detection using computer vision-based object detection technologies. However, these studies often suffer from a lack of data for training deep learning models, resulting in inadequate accuracy. This study proposes a method to improve the accuracy of deep learning models through the use of virtual image data. The target building is created as a 3D model and finished with materials similar to actual components. Subsequently, a virtual defect texture is produced by layering three types of images: defect information, area information, and material information images, to fabricate materials with defects. Images are generated by rendering the 3D model and the defect, and annotations are created for segmentation. This approach creates a hybrid dataset by combining virtual data with actual site image data, which is then used to train the deep learning model. This research was conducted on the tile process of finishing construction projects, focusing on cracks and falls as the target defects. The training results of the deep learning model show that the F1-Score increased by 12.08% for falls and cracks when using the hybrid dataset compared to the real image dataset alone, validating the hybrid data approach. This study contributes not only to unmanned and automated smart construction management but also to enhancing safety on construction sites. To establish an integrated smart quality management system, it is necessary to detect various defects simultaneously with high accuracy. Utilizing this method for automatic defect detection in other types of construction can potentially expand the possibilities for implementing an integrated smart quality management system.

Emergency vehicle priority signal system based on deep learning using acoustic data (음향 데이터를 활용한 딥러닝 기반 긴급차량 우선 신호 시스템)

  • Lee, SoYeon;Jang, Jae Won;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.44-51
    • /
    • 2021
  • In general, golden time refers to the most important time in the initial response to accidents such as saving lives or extinguishing fires. The golden time varies from disaster to disaster, but is aimed at five minutes in terms of fire and first aid. However, for the actual site, the average dispatch time for ambulances is 9 minutes and the average transfer time is 17.6 minutes, which is quite large compared to the golden time. There are various causes for this delay, but the main cause is traffic jams. In order to solve the problem, the government has established emergency car concession obligations and secured golden time to prioritize ambulances in places with the highest accident rate, but it is not a solution in rush hour when traffic is increasing rapidly. Therefore, this paper proposed a deep learning-based emergency vehicle priority signal system using collected sound data by installing sound sensors on traffic lights and conducted an experiment to classify frequency signals that differ depending on the distance of the emergency vehicle.

Course recommendation system using deep learning (딥러닝을 이용한 강좌 추천시스템)

  • Min-Ah Lim;Seung-Yeon Hwang;Dong-Jin Shin;Jae-Kon Oh;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.193-198
    • /
    • 2023
  • We study a learner-customized lecture recommendation project using deep learning. Recommendation systems can be easily found on the web and apps, and examples using this feature include recommending feature videos by clicking users and advertising items in areas of interest to users on SNS. In this study, the sentence similarity Word2Vec was mainly used to filter twice, and the course was recommended through the Surprise library. With this system, it provides users with the desired classification of course data conveniently and conveniently. Surprise Library is a Python scikit-learn-based library that is conveniently used in recommendation systems. By analyzing the data, the system is implemented at a high speed, and deeper learning is used to implement more precise results through course steps. When a user enters a keyword of interest, similarity between the keyword and the course title is executed, and similarity with the extracted video data and voice text is executed, and the highest ranking video data is recommended through the Surprise Library.

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF