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Abstract: Quality control in construction projects necessitates the detection of defects during 
construction. Currently, this task is performed manually by site supervisors. This manual process is 
inefficient, labor-intensive, and prone to human error, potentially leading to decreased productivity. To 
address this issue, research has been conducted to automate defect detection using computer vision-
based object detection technologies. However, these studies often suffer from a lack of data for training 
deep learning models, resulting in inadequate accuracy. 

This study proposes a method to improve the accuracy of deep learning models through the use of 
virtual image data. The target building is created as a 3D model and finished with materials similar to 
actual components. Subsequently, a virtual defect texture is produced by layering three types of images: 
defect information, area information, and material information images, to fabricate materials with 
defects. Images are generated by rendering the 3D model and the defect, and annotations are created for 
segmentation. This approach creates a hybrid dataset by combining virtual data with actual site image 
data, which is then used to train the deep learning model. This research was conducted on the tile process 
of finishing construction projects, focusing on cracks and falls as the target defects. The training results 
of the deep learning model show that the F1-Score increased by 12.08% for falls and cracks when using 
the hybrid dataset compared to the real image dataset alone, validating the hybrid data approach. This 
study contributes not only to unmanned and automated smart construction management but also to 
enhancing safety on construction sites. To establish an integrated smart quality management system, it 
is necessary to detect various defects simultaneously with high accuracy. Utilizing this method for 
automatic defect detection in other types of construction can potentially expand the possibilities for 
implementing an integrated smart quality management system. 
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1. INTRODUCTION 

1.1 Background 

The construction industry is facing a continuous decline in its labor force, which impacts the quality 
of construction projects. To mitigate this, research into automation in construction and management has 
been conducted, recognized as an efficient solution to replace the labor workforce [1]. Among the most 
promising fields is automation through computer vision [2]. Quality control in construction, especially 
construction quality management, requires significant labor and is prone to errors due to subjective 

311

https://dx.doi.org/10.6106/ICCEPM.2024.0311



 

  
 

judgments, making image analysis techniques based on computer vision and deep learning hold much 
potential [2-4]. However, the accuracy limitations of these technologies have been pointed out, 
hindering their adoption [5]. 

Image-based object detection technologies rely on the image data used for training to detect objects. 
The nature of these object detection technologies requires a diversity and quantity of data to achieve 
high accuracy [6,7]. However, due to the characteristics of the construction industry, it is challenging 
to collect defect data under various conditions, leading to an unresolved issue of data scarcity [5]. 

Therefore, the purpose of this study is to explore the foundational use of virtual image data to address 
the shortage of actual image data, by generating virtual images through 3D modeling software for use 
as data. Therefore, this study aims to examine the feasibility of applying a hybrid dataset, combining 
both actual and virtual image data, for the detection of defects in tile construction. 

Before proceeding with the study, the type of construction work to be targeted was selected. Finishing 
works account for 51.62% of the defects in apartment building constructions, with tile defects alone 
constituting 19.15%, representing a significantly large portion [8]. Thus, tile work was chosen as the 
targeted construction work, and detachment and cracking were selected as the defect types for this study. 

1.2 Research Flow 

This study is conducted in four stages as shown in Figure 4: image collection and analysis, virtual 3D 
model creation, image data generation and processing, and model training and performance comparison. 

The actual image collection and analysis stage involves collecting images of defects that have 
occurred on-site and analyzing their shapes to inform the creation of virtual models. Following this, the 
3D model creation stage involves designing tiles with various defect types and creating walls containing 
these tiles to generate 3D models. These models are then rendered to produce images. To make the 
generated images suitable for deep learning model training, a labeling process is carried out. The datasets 
created through these stages are trained under the same conditions using a deep learning model, and the 
results are compared in the model training and performance comparison stage. 

 

 

Figure 1. Research flow 

 

2. Literature Reveiw 

To alleviate the data scarcity issue in computer vision (CV) deep learning models, research has been 
undertaken to generate new data. The objectives of CV are varied, including scene understanding, safety 
monitoring, and defect detection, among others. Moreover, the methodologies for generating new data 
exhibit differences: there are approaches that generate new data from existing data through Generative 
Adversarial Networks (GANs), methods that extract images from Building Information Modeling (BIM) 
models and create data through style transfer techniques, and strategies that produce data from virtual 
environments [9-13]. 

Hong utilized BIM models for generating data for deep learning models aimed at scene understanding 
for buildings and bridges  [14]. This study extracted necessary scenes from the BIM models and 
rendered the images more realistic through Cycle-GAN. Additionally, leveraging the advantages of 
BIM, automatic annotations were generated by assigning unique colors to each element, enabling the 
Mask R-CNN model to achieve an average accuracy of 71.6% for buildings and 84.9% for bridges, 
respectively. 

Lee generated data for models used for on-site safety monitoring through a game engine [15]. Safety 
equipment used on construction sites was created in a virtual environment and synthesized with actual 
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site photos for model training. Subsequently, a hybrid dataset was formed, leading to a performance 
improvement of up to 30.4%. 

Siu created images for a model designed to detect cracks inside sewer pipes by synthesizing images 
that closely resemble real-world defects in a virtual environment with real images using style transfer 
[16]. The head of the deep learning model was also modified to a contrastive head, achieving a 7.7% 
improvement in detection performance. 

All these studies have successfully generated virtual data to enhance accuracy. However, unlike 
previous research, this study focuses on generating defects for which actual field data could not be 
obtained, aiming to create them more conveniently in a virtual environment. Instead of style transfer, 
this research efficiently proceeded with rendering image data realism using the native rendering system 
of 3D software. 

3. Methodology 

3.1 Real image collection 

For this study, real images were collected using image crawling based on the Python language, 
utilizing the Requests and BeautifulSoup libraries. Google Images was used as the search engine for this 
process, and the environment was set up in VS Code. The search terms used for crawling included 
"Cracked tile", "Broken tile", "Fallen tile", "Tile defect". Through this process, a total of 1,000 images 
were collected. 

The images collected via image crawling were randomly gathered, which means some were irrelevant 
to the learning or duplicates. Thus, duplicates were removed, and images unrelated to the study were 
also excluded. Since this research targets defects occurring during construction rather than defects in a 
single product, the collection focused on images of tile walls. Consequently, only images containing at 
least six tiles were selected. Image-based analysis technologies dissect and analyze images at the pixel 
level, learning the characteristics of the target object for detection. Therefore, images with low resolution 
were eliminated to avoid training errors. Additionally, images containing text or frames, which could 
interfere with the training process, were either edited to remove these elements or excluded if such 
editing was impractical. Through this filtering process, a total of 307 images were collected for the 
study. 

3.2 3D modeling 

3.2.1 Tile texture 

To create virtual 3D models suitable for the objectives of this study, the process begins with the 
creation of virtual tiles. The software used for creating 3D models is Blender. This program allows the 
use of various 3D assets or textures available online, but acquiring textures or assets that include specific 
defects such as cracks or fall-offs is challenging due to limited availability. Therefore, the production 
was carried out through image synthesis. This phase is conducted in three main steps. 

 

 

Figure 2a. Image layering 
 

Figure 2b. Tile with defects 

Figure 2. Defect texture creation 
 
The first step involves the synthesis of defect information images and material information images, 

combining images of other materials with defects or images of similar forms with the texture of tile 
material as shown in Figure 2a. In the second step, areas without defects are removed from the defect 
image placed under the tile texture, and an area information image is created to remove the defect areas 
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from the tile material image. This is done by creating a black background image and painting the 
necessary defect areas in white, which is then combined. This task is performed through the connection 
of each image's nodes in Shading, resulting in the tile image being partially erased and the underlying 
defect image appearing on the tile texture. Figure 2b is the result of combining images. 

The third step involves applying a sense of depth to the images during rendering to mimic the effects 
that change according to the angle and position of each material in reality. This involves applying a 
sense of depth to both the tile and the defect separately. In Shading, this is achieved by linking the 
Normal Map and Displacement with the previously conducted node connections, giving each their own 
sense of depth. 

 

 

Figure 3. Blender node connention 
 

3.2.2 3D Modeling 

Through these processes, defect tile textures are created, allowing the model to learn scenarios where 
defects must be identified on a wall, similar to an actual construction site. This is achieved by combining 
defective tiles with standard tiles to construct walls as shown in Figure 4a. This task was applied to tiles 
of various materials and shapes to enhance diversity. Subsequently, these constructed tile walls are used 
to create 3D models. Considering that tiles are commonly used in bathrooms and living rooms in 
residential buildings, they were placed in similar locations within the 3D models. Walls of identical tile 
materials with different defects were arranged, and four 3D models were positioned in all directions 
with Sun Light placed in the center to add lighting conditions as shown in Figure 4b. Through this 
method, a total of 28 models were created using tiles of seven different materials. 

 

 
Figure 4a. Tile wall with defects 

 
Figure 4b. Model positioning 

Figure 4. Tile wall and model 

 

3.3 Image data generation 
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3.3.1 Image rendering 

For image generation, the rendering of the 3D model is conducted. When rendering, the position and 
height of the camera used in Blender are set, considering the shooting positions during actual quality 
inspections. In the research of automation of quality control through CV, the devices used for defect 
detection include UAVs such as drones and robots like Spot for monitoring [17-20]. These two types 
differ in height; UAVs shoot from a relatively high position, while robots like Spot shoot from a lower 
height. The shooting angle considered shooting from the horizontal plane of the target surface. Based 
on this, three cameras were installed at heights of 0.5m and 1.7m, totaling six cameras, and considering 
manual inspections, an additional camera was placed at the center of the wall, making a total of seven 
cameras as shown in Figure 5a, 5b. As a result, a total of 28 images are rendered for one material type. 
Through this process, a total of 784 images were generated. 

 

 
Figure 5a. Camera displacement example 1 

 
Figure 5b. Camera displacement example 2 

Figure 5. Camera displacement 
3.3.2 Image labeling 

For object detection conducted through deep learning models, it's necessary to create annotation files 
through labeling images to transform them into a trainable format. Labeling identifies the target object 
on the image, informing the deep learning model about the location of the object it needs to learn. In 
this study, segmentation-based labeling was carried out. Unlike the general labeling method of bounding 
boxes, segmentation precisely marks the target object with polygon-shaped lines, distinguishing it from 
other objects. Tile defects were labeled using segmentation to avoid the error of recognizing grout lines 
as cracks or detachments with bounding boxes, specifically using instance segmentation to individually 
distinguish each defect as shown in Figure 6. Labels were classified into three categories: tile, crack, 
and detachment, creating annotation files for each image file. 

 

 

Figure 6a. Labeling layer 

 

Figure 6b. Labeling result 

Figure 6. Segmentation labeling 

4. Dataset creation and Deep-learnging experiment 

4.1 Dataset creation 

To enhance accuracy for training deep learning models aimed at object detection, augmentation is 
applied to ensure the diversity of training data. Augmentation enriches the dataset's variety and increases 
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the quantity of data by introducing changes such as color variation, exposure adjustment, blurring, or 
rotation to the original image data. In this study, augmentation was performed to secure data diversity, 
utilizing techniques such as Rotate, Shear, Crop, Brightness, MixUp, CutMix, Flip, GrayScale, 
Saturation, and GaussianBlur. This process was applied to both real and virtual image data, generating 
2100 real image data and 3300 virtual image data. 

Subsequent analyses were conducted to verify the efficacy of virtual image data. This research aimed 
to assess the performance of learning outcomes using virtual image data; hence, a comparison was made 
between hybrid datasets that combined real and virtual images and datasets comprising only real images. 
Additionally, to evaluate the performance of virtual image data as standalone datasets, learning 
outcomes from virtual image datasets were also compared. Consequently, the generated image data was 
classified into three categories for deep learning training. 

 

Table 1. Dataset 

Dataset Number of data 

Real Image Data 2100 

Virtual Image Data 3300 

Hybrid Image Data 5400 

 
The deep learning model used for training is the Yolov8 model for Object Classification and 

Detection, specifically the Yolov8x-seg model for Segmentation training. The training conditions were 
as follows: OS: Linux, Open source Platform: Anaconda Jupyter, GPU: RTX3090, Software: Pytorch, 
Model: Yolov8x-seg, Epochs: 400, Patience: 50. The comparison of training results was conducted 
through F1-score - Confidence graphs. The F1-score is obtained through the harmonic mean of Precision 
and Recall values, while Confidence represents the model's reliability. In other words, it indicates how 
confident the model is in its predictions. 

4.2 Experimental analysis 

The results of the training are shown in the following Figure 7. In the real image dataset grph, the 
blue graph represents Tile, the orange graph represents Crack, and the red graph represents Fall. The 
green graph is an exception, including objects such as toilets, sofas, and windows, which are excluded 
from the target objects. 

 

 

Figure 7a. Real image dataset 

 

Figure 7b. Virtual image dataset 

 

Figure 7c. Hybrid dataset 

Figure 7. F-1 score of each dataset 

 
The thick blue line represents the overall average. From this, we can see that the detection ability for 

tiles is generally very high, with Fall showing an F1 score of about 0.8, and Crack being just under 0.7. 
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For the virtual image dataset and the hybrid dataset, the red graph represents Tile, the blue represents 
Fall, and the orange represents Crack, with the green graph being identical to the real image dataset. The 
virtual image dataset shows that, except for Fall, the performance in detecting other objects lags behind 
the real data. However, the hybrid dataset shows an overall improvement in detection performance 
compared to the real dataset. 

Figure 8 shows the Comparison results between each class. V0 represents real image data set, V1 
represents virtual image data set, and V2 represents hybrid data set. Comparing the results for each class, 
the maximum F1 scores for Tile class learning results are similar between using only real images and 
the hybrid dataset. However, the learning results through the Hybrid dataset record higher F1 scores 
across a broader range of Confidence values. This implies that while the Tile class is included in all 
images in the real image dataset, thus showing high learning results, supplementing this with virtual 
image data allows for learning with image data that includes diversity, achieving high F1 scores even at 
wide Confidence levels. 

 

 

Figure 8a. Tile class 

 

Figure 8b. Crack class 

 

Figure 8c. Fall class 

Figure 8. F-1 score comparison between each class 
 
Comparing the learning results for the Crack class, the Hybrid dataset's learning results were about 

10% higher in F1 score than the other datasets. For the Fall class, the results were 8% higher than the 
real image dataset and 5% higher than the virtual image dataset. This proves the effectiveness of the 
Hybrid dataset with sufficient figures. 

5. Conclusion 

In the current construction industry, the application of image analysis-based technology for 
construction quality management is rare. This scarcity is due to the technology's lack of accuracy, 
making practical application challenging. Nevertheless, efforts to apply this technology in real-world 
settings continue, driven by the significant benefits that digitalization and automation can bring to tasks. 
This study has validated the improvement in deep learning model accuracy through the creation of 
virtual image data and proposed a methodology for generating such images. The defect detection model 
using the Hybrid dataset proposed in this study showed superior results in all three classes: tile, crack, 
and fall, compared to models using only real image data or only virtual image data, as evidenced by F1-
score comparisons. 

This research used a relatively small set of 307 original real images. Increasing the number of real 
images would likely change the learning outcomes, as real images are considered the best data for 
training. Therefore, for practical field application, it seems ideal to use real image data as the main 
dataset and virtual data as supplementary for model training. Nonetheless, this research is meaningful 
as it contributes to improving the accuracy of model learning outcomes when real images are scarce. 

The method proposed in this study can be applied not only to tile defects but also to other types of 
construction work. By creating defect textures in the same manner and applying them to 3D models, it 
is possible to generate image data for desired defects. This demonstrates that the methodology can be 
significantly used in developing a single model for detecting defects across all types of work through 
the construction of an integrated smart quality management system. Furthermore, this research 

317



 

  
 

contributes to expanding the spectrum of data used in deep learning by verifying that images created 
through 3D modeling tools can also improve model accuracy. 
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