• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.025 seconds

Leveraging Deep Learning and Farmland Fertility Algorithm for Automated Rice Pest Detection and Classification Model

  • Hussain. A;Balaji Srikaanth. P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.959-979
    • /
    • 2024
  • Rice pest identification is essential in modern agriculture for the health of rice crops. As global rice consumption rises, yields and quality must be maintained. Various methodologies were employed to identify pests, encompassing sensor-based technologies, deep learning, and remote sensing models. Visual inspection by professionals and farmers remains essential, but integrating technology such as satellites, IoT-based sensors, and drones enhances efficiency and accuracy. A computer vision system processes images to detect pests automatically. It gives real-time data for proactive and targeted pest management. With this motive in mind, this research provides a novel farmland fertility algorithm with a deep learning-based automated rice pest detection and classification (FFADL-ARPDC) technique. The FFADL-ARPDC approach classifies rice pests from rice plant images. Before processing, FFADL-ARPDC removes noise and enhances contrast using bilateral filtering (BF). Additionally, rice crop images are processed using the NASNetLarge deep learning architecture to extract image features. The FFA is used for hyperparameter tweaking to optimise the model performance of the NASNetLarge, which aids in enhancing classification performance. Using an Elman recurrent neural network (ERNN), the model accurately categorises 14 types of pests. The FFADL-ARPDC approach is thoroughly evaluated using a benchmark dataset available in the public repository. With an accuracy of 97.58, the FFADL-ARPDC model exceeds existing pest detection methods.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Interaction art using Video Synthesis Technology

  • Kim, Sung-Soo;Eom, Hyun-Young;Lim, Chan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • Media art, which is a combination of media technology and art, is making a lot of progress in combination with AI, IoT and VR. This paper aims to meet people's needs by creating a video that simulates the dance moves of an object that users admire by using media art that features interactive interactions between users and works. The project proposed a universal image synthesis system that minimizes equipment constraints by utilizing a deep running-based Skeleton estimation system and one of the deep-running neural network structures, rather than a Kinect-based Skeleton image. The results of the experiment showed that the images implemented through the deep learning system were successful in generating the same results as the user did when they actually danced through inference and synthesis of motion that they did not actually behave.

Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm

  • Lee, Jae-Hong;Kim, Do-hyung;Jeong, Seong-Nyum;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.114-123
    • /
    • 2018
  • Purpose: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Methods: Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. Results: The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. Conclusions: We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.

Vision Sensor and Deep Learning-based Around View Monitoring System for Ship Berthing (비전 센서 및 딥러닝 기반 선박 접안을 위한 어라운드뷰 모니터링 시스템)

  • Kim, Hanguen;Kim, Donghoon;Park, Byeolteo;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2020
  • This paper proposes vision sensors and deep learning-based around view monitoring system for ship berthing. Ship berthing to the port requires precise relative position and relative speed information between the mooring facility and the ship. For ships of Handysize or higher, the vesselships must be docked with the help of pilots and tugboats. In the case of ships handling dangerous cargo, tug boats push the ship and dock it in the port, using the distance and velocity information receiving from the berthing aid system (BAS). However, the existing BAS is very expensive and there is a limit on the size of the vessel that can be measured. Also, there is a limitation that it is difficult to measure distance and speed when there are obstacles near the port. This paper proposes a relative distance and speed estimation system that can be used as a ship berthing assist system. The proposed system is verified by comparing the performance with the existing laser-based distance and speed measurement system through the field tests at the actual port.

Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment (VR/AR 환경의 협업 딥러닝을 적용한 맞춤형 조종사 훈련 플랫폼)

  • Kim, Hee Ju;Lee, Won Jin;Lee, Jae Dong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1075-1087
    • /
    • 2020
  • Aviation ICT technology is a convergence technology between aviation and electronics, and has a wide variety of applications, including navigation and education. Among them, in the field of aerial pilot training, there are many problems such as the possibility of accidents during training and the lack of coping skills for various situations. This raises the need for a simulated pilot training system similar to actual training. In this paper, pilot training data were collected in pilot training system using VR/AR to increase immersion in flight training, and Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment that can recommend effective training courses to pilots is proposed. To verify the accuracy of the recommendation, the performance of the proposed collaborative deep learning algorithm with the existing recommendation algorithm was evaluated, and the flight test score was measured based on the pilot's training data base, and the deviations of each result were compared. The proposed service platform can expect more reliable recommendation results than previous studies, and the user survey for verification showed high satisfaction.

Development of a Low-cost Industrial OCR System with an End-to-end Deep Learning Technology

  • Subedi, Bharat;Yunusov, Jahongir;Gaybulayev, Abdulaziz;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.51-60
    • /
    • 2020
  • Optical character recognition (OCR) has been studied for decades because it is very useful in a variety of places. Nowadays, OCR's performance has improved significantly due to outstanding deep learning technology. Thus, there is an increasing demand for commercial-grade but affordable OCR systems. We have developed a low-cost, high-performance OCR system for the industry with the cheapest embedded developer kit that supports GPU acceleration. To achieve high accuracy for industrial use on limited computing resources, we chose a state-of-the-art text recognition algorithm that uses an end-to-end deep learning network as a baseline model. The model was then improved by replacing the feature extraction network with the best one suited to our conditions. Among the various candidate networks, EfficientNet-B3 has shown the best performance: excellent recognition accuracy with relatively low memory consumption. Besides, we have optimized the model written in TensorFlow's Python API using TensorFlow-TensorRT integration and TensorFlow's C++ API, respectively.

A Deep Convolutional Neural Network with Batch Normalization Approach for Plant Disease Detection

  • Albogamy, Fahad R.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.51-62
    • /
    • 2021
  • Plant disease is one of the issues that can create losses in the production and economy of the agricultural sector. Early detection of this disease for finding solutions and treatments is still a challenge in the sustainable agriculture field. Currently, image processing techniques and machine learning methods have been applied to detect plant diseases successfully. However, the effectiveness of these methods still needs to be improved, especially in multiclass plant diseases classification. In this paper, a convolutional neural network with a batch normalization-based deep learning approach for classifying plant diseases is used to develop an automatic diagnostic assistance system for leaf diseases. The significance of using deep learning technology is to make the system be end-to-end, automatic, accurate, less expensive, and more convenient to detect plant diseases from their leaves. For evaluating the proposed model, an experiment is conducted on a public dataset contains 20654 images with 15 plant diseases. The experimental validation results on 20% of the dataset showed that the model is able to classify the 15 plant diseases labels with 96.4% testing accuracy and 0.168 testing loss. These results confirmed the applicability and effectiveness of the proposed model for the plant disease detection task.

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

A Study on Improvement of Image Classification Accuracy Using Image-Text Pairs (이미지-텍스트 쌍을 활용한 이미지 분류 정확도 향상에 관한 연구)

  • Mi-Hui Kim;Ju-Hyeok Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.561-566
    • /
    • 2023
  • With the development of deep learning, it is possible to solve various computer non-specialized problems such as image processing. However, most image processing methods use only the visual information of the image to process the image. Text data such as descriptions and annotations related to images may provide additional tactile and visual information that is difficult to obtain from the image itself. In this paper, we intend to improve image classification accuracy through a deep learning model that analyzes images and texts using image-text pairs. The proposed model showed an approximately 11% classification accuracy improvement over the deep learning model using only image information.