• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.029 seconds

'Knowing' with AI in construction - An empirical insight

  • Ramalingham, Shobha;Mossman, Alan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.686-693
    • /
    • 2022
  • Construction is a collaborative endeavor. The complexity in delivering construction projects successfully is impacted by the effective collaboration needs of a multitude of stakeholders throughout the project life-cycle. Technologies such as Building Information Modelling and relational project delivery approaches such as Alliancing and Integrated Project Delivery have developed to address this conundrum. However, with the onset of the pandemic, the digital economy has surged world-wide and advances in technology such as in the areas of machine learning (ML) and Artificial Intelligence (AI) have grown deep roots across specializations and domains to the point of matching its capabilities to the human mind. Several recent studies have both explored the role of AI in the construction process and highlighted its benefits. In contrast, literature in the organization studies field has highlighted the fear that tasks currently done by humans will be done by AI in future. Motivated by these insights and with the understanding that construction is a labour intensive sector where knowledge is both fragmented and predominantly tacit in nature, this paper explores the integration of AI in construction processes across project phases from planning, scheduling, execution and maintenance operations using literary evidence and experiential insights. The findings show that AI can complement human skills rather than provide a substitute for them. This preliminary study is expected to be a stepping stone for further research and implementation in practice.

  • PDF

Development of Camera-based Character Creation and Motion Control System using StyleGAN Deep Learning Technology (StyleGAN 딥러닝 기술을 활용한 카메라 기반 캐릭터 생성 및 모션 제어 시스템 개발)

  • Lee, Jeong-Hun;Kim, Ju-Hyeong;Shin, Dong-hyeon;Yang, Jae-hyeong;Chang, Moon-soo
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.934-936
    • /
    • 2022
  • 현재 사회적인(COVID-19) 영향으로 메타버스에 대한 수요가 급증하였지만, 메타버스 플랫폼 진입을 지원하는 XR(AR/VR) 장비의 높은 가격대와 전문성 요구로 폭넓은 수요층을 포괄하기 어려운 상황이다. 본 논문에서는 이러한 수요층의 어려움을 개선하고자 웹 캠이나 스마트폰 카메라로 생성된 개인의 사진 이미지를 StyleGAN 딥러닝 기술과 접목시켜 캐릭터를 생성해 Mediapipe를 활용하여 모션 측정 및 제어를 처리하는 서비스를 제안하여 메타버스 시장의 대중화에 기여하고자 한다.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

Density Change Adaptive Congestive Scene Recognition Network

  • Jun-Hee Kim;Dae-Seok Lee;Suk-Ho Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • In recent times, an absence of effective crowd management has led to numerous stampede incidents in crowded places. A crucial component for enhancing on-site crowd management effectiveness is the utilization of crowd counting technology. Current approaches to analyzing congested scenes have evolved beyond simple crowd counting, which outputs the number of people in the targeted image to a density map. This development aligns with the demands of real-life applications, as the same number of people can exhibit vastly different crowd distributions. Therefore, solely counting the number of crowds is no longer sufficient. CSRNet stands out as one representative method within this advanced category of approaches. In this paper, we propose a crowd counting network which is adaptive to the change in the density of people in the scene, addressing the performance degradation issue observed in the existing CSRNet(Congested Scene Recognition Network) when there are changes in density. To overcome the weakness of the CSRNet, we introduce a system that takes input from the image's information and adjusts the output of CSRNet based on the features extracted from the image. This aims to improve the algorithm's adaptability to changes in density, supplementing the shortcomings identified in the original CSRNet.

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

A Study on Code Vulnerability Repair via Large Language Models (대규모 언어모델을 활용한 코드 취약점 리페어)

  • Woorim Han;Miseon Yu;Yunheung Paek
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.757-759
    • /
    • 2024
  • Software vulnerabilities represent security weaknesses in software systems that attackers exploit for malicious purposes, resulting in potential system compromise and data breaches. Despite the increasing prevalence of these vulnerabilities, manual repair efforts by security analysts remain time-consuming. The emergence of deep learning technologies has provided promising opportunities for automating software vulnerability repairs, but existing AIbased approaches still face challenges in effectively handling complex vulnerabilities. This paper explores the potential of large language models (LLMs) in addressing these limitations, examining their performance in code vulnerability repair tasks. It introduces the latest research on utilizing LLMs to enhance the efficiency and accuracy of fixing security bugs.

Automatic Extraction of Hangul Stroke Element Using Faster R-CNN for Font Similarity (글꼴 유사도 판단을 위한 Faster R-CNN 기반 한글 글꼴 획 요소 자동 추출)

  • Jeon, Ja-Yeon;Park, Dong-Yeon;Lim, Seo-Young;Ji, Yeong-Seo;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.953-964
    • /
    • 2020
  • Ever since media contents took over the world, the importance of typography has increased, and the influence of fonts has be n recognized. Nevertheless, the current Hangul font system is very poor and is provided passively, so it is practically impossible to understand and utilize all the shape characteristics of more than six thousand Hangul fonts. In this paper, the characteristics of Hangul font shapes were selected based on the Hangul structure of similar fonts. The stroke element detection training was performed by fine tuning Faster R-CNN Inception v2, one of the deep learning object detection models. We also propose a system that automatically extracts the stroke element characteristics from characters by introducing an automatic extraction algorithm. In comparison to the previous research which showed poor accuracy while using SVM(Support Vector Machine) and Sliding Window Algorithm, the proposed system in this paper has shown the result of 10 % accuracy to properly detect and extract stroke elements from various fonts. In conclusion, if the stroke element characteristics based on the Hangul structural information extracted through the system are used for similar classification, problems such as copyright will be solved in an era when typography's competitiveness becomes stronger, and an automated process will be provided to users for more convenience.

A Study on the system in the Theory of 'Syndrome Differentiation' from the Viewpoint of Yoon Gilyeong (윤길영의 변증체계 고찰)

  • Kim, Gyeong Cheol;Hong, Dong Gyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.20 no.1
    • /
    • pp.15-26
    • /
    • 2016
  • Objectives Syndrome differentiation and treatment (辨證論治) was one of the core theories in Korean medicine and syndrome differentiation (辨證) constitutes a branch of disease diagnosis in Korean medicine. Yoon Gil-Young, one of the modern outstanding scholar of basic medical science in Korean medicine, wrote on basic theories of Korean medicine such as physiology, pathology, formula science, etc. Hereby we will analyze and discuss his works to understand his recognition of historical changes in the syndrome differentiation. Methods We conducted researches into the two works of Yoon Gil-Young's, which are "The Clinical Formula Science of Eastern Medicine (東醫臨床方劑學)" and "The theory of Four-Constitution Medicine (四象體質醫學論)". From Yoon's academic standpoint which connects the basic medical science with the clinical medicine, we analyzed his opinion about the system in the Theory of 'Syndrome Differentiation'. Results According to Yoon's research work on the Theory of 'Syndrome Differentiation', the system of syndrome differentiation, which had its deep root in the theory of Yin and Yang (陰陽) & the theory of abbreviation of the five circuit phases (五運) and the six atomspheric influences (六氣) of the "Huangdi's Internal Classic (黃帝內經)". Conclusions Yoon Gil-Young's theory of differentiation of syndromes and treatment is widespread so much that he studied on the learning field of Traditional Korean Mediciine and ingenious as well. He explain on the main principles of differentiation of syndromes based on "Huang Di Nei Jing" and the system of differentiation of syndromes is composed of Traditional Korean Medical Physiology.

Development a Meal Support System for the Visually Impaired Using YOLO Algorithm (YOLO알고리즘을 활용한 시각장애인용 식사보조 시스템 개발)

  • Lee, Gun-Ho;Moon, Mi-Kyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.1001-1010
    • /
    • 2021
  • Normal people are not deeply aware of their dependence on sight when eating. However, since the visually impaired do not know what kind of food is on the table, the assistant next to them holds the blind spoon and explains the position of the food in a clockwise direction, front and rear, left and right, etc. In this paper, we describe the development of a meal assistance system that recognizes each food image and announces the name of the food by voice when a visually impaired person looks at their table using a smartphone camera. This system extracts the food on which the spoon is placed through the YOLO model that has learned the image of food and tableware (spoon), recognizes what the food is, and notifies it by voice. Through this system, it is expected that the visually impaired will be able to eat without the help of a meal assistant, thereby increasing their self-reliance and satisfaction.

An Development of Image Retrieval Model based on Image2Vec using GAN (Generative Adversarial Network를 활용한 Image2Vec기반 이미지 검색 모델 개발)

  • Jo, Jaechoon;Lee, Chanhee;Lee, Dongyub;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.301-307
    • /
    • 2018
  • The most of the IR focus on the method for searching the document, so the keyword-based IR system is not able to reflect the feature information of the image. In order to overcome these limitations, we have developed a system that can search similar images based on the vector information of images, and it can search for similar images based on sketches. The proposed system uses the GAN to up sample the sketch to the image level, convert the image to the vector through the CNN, and then retrieve the similar image using the vector space model. The model was learned using fashion image and the image retrieval system was developed. As a result, the result is showed meaningful performance.