
대규모 언어모델을 활용한 코드 취약점 리페어

한우림 1, 유미선 1, 백윤흥 1
1서울대학교 전기정보공학부, 서울대학교 반도체 공동연구소

wrhan@sor.snu.ac.kr, msyu@sor.snu.ac.kr, ypaek@sor.snu.ac.kr

A Study on Code Vulnerability Repair via Large Language

Models

Woorim Han1, Miseon Yu1, Yunheung Paek1
1Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research Center

(ISRC), Seoul National University

Abstract

Software vulnerabilities represent security weaknesses in software systems that attackers exploit for malicious

purposes, resulting in potential system compromise and data breaches. Despite the increasing prevalence of these

vulnerabilities, manual repair efforts by security analysts remain time-consuming. The emergence of deep learning

technologies has provided promising opportunities for automating software vulnerability repairs, but existing AI-

based approaches still face challenges in effectively handling complex vulnerabilities. This paper explores the

potential of large language models (LLMs) in addressing these limitations, examining their performance in code

vulnerability repair tasks. It introduces the latest research on utilizing LLMs to enhance the efficiency and

accuracy of fixing security bugs.

1. Introduction

Software vulnerabilities refer to security flaws, glitches, or

weaknesses within software systems that attackers can

exploit for malicious purposes. Specifically, attackers may

exploit unaddressed security vulnerabilities in software to

launch attacks and compromise a system to cause system

damage or steal confidential data, leading to significant

economic damage. Security vulnerabilities are becoming

more widespread in contemporary software, with significant

consequences for our society. Common Vulnerabilities and

Exposures [1] reported a record-breaking discovery of

26,448 software vulnerabilities in 2022, marking a notable

59% increase from 2021 [2]. Thus, it is crucial to defend

against software vulnerabilities through code repair.

Unfortunately, it requires security analysts to invest

substantial effort in manually addressing or repairing these

vulnerable functions.

The advancements in deep learning have opened avenues

for automatic approaches to software vulnerability repair,

enabling efficient learning of the transition from vulnerable

code to corrected code. Although researchers have proposed

various Artificial Intelligence based approaches to assist

under-resourced security analysts in better understanding the

characteristics of vulnerabilities and finding them more

quickly, these approaches still suffer from inaccurate repair

results and struggle handling lengthy vulnerable code.

Recently, with large language models (LLMs) gaining

popularity in various code intelligence tasks, there has been

an increasing focus on using LLMs for code vulnerability

repairs, aiming to address the limitations of previous AI-

based approaches. Various recent works examine the repair

capability of LLMs and utilize them to achieve state-of-the-

art performance in learning-based code vulnerability repair.

2. Large Language Model

LLMs have gained widespread adoption in Natural

Language Processing (NLP) owing to their remarkable

performance, typically following the Transformer

architecture and undergoing training on extensive datasets

via self-supervised learning. Recent LLMs like ChatGPT and

GPT-4 have demonstrated impressive performance in various

code intelligence tasks. Thus, considerable efforts have been

made towards leveraging the capability of LLMs for code

generation or repair tasks.

(fig 1) The Testing Framework of [3]

ASK 2024 학술발표대회 논문집 (31권 1호)

- 757 -

3. Code Vulnerability Repair via Large Language

Models

A code vulnerability repair task involves identifying and

fixing security vulnerabilities present in software code. These

vulnerabilities can range from simple issues like improper

input validation to more complex problems such as buffer

overflows or injection attacks. The vulnerability repair task

involves analyzing the codebase, identifying vulnerable areas,

and applying appropriate fixes to mitigate security risks.

Recent works typically utilize large language models for

applying correct patches for identified security bugs.

3.1 Zero-shot Evaluation of Utilizing LLMs for

Vulnerability Repair

Pearce et al. [3] provide the first zero-shot evaluation of

LLMs for generating security fixes, demonstrating that pre-

trained models can produce security fixes without additional

training in simple vulnerable scenarios. This work focuses on

understanding the repair ability of LLMs. As depicted in Fig.

1, the testing framework utilizes existing security tools to

detect bugs within programs. These bug reports and the

original programs are converted into prompts for producing

potential fixes. Subsequently, the replacement code generated

by the LLM is evaluated using external tools to determine if

the suggestions effectively repair the original vulnerable

program. The authors analyze and compare various prompts,

contextual cues, and model parameters (i.e. temperature,

sampling strategy) to utilize LLMs for generating repaired

versions of insecure programs. Their main focus lies in

engineering prompts, as the output of LLMs is highly

sensitive to how prompts are provided; one word difference

in the prompt could lead to substantial performance drop.

They examine five different prompt templates to get the best

out of models. Five reasonable templates with varying

amount of context were tested. These templates range from

providing no context to the LLM to offering extensive

comments and hints, which may include subtle variations in

wording and word order (such as 'fixed' vs. 'bugfix'), as well

as the option to include or exclude the faulty code. Among

various LLMs, OpenAI Codex models consistently

outperformed others in generating secure and functionally

correct patches. Moreover, LLMs tend to perform better with

more context provided in the prompt. However, while black-

box LLMs often produced correct outputs for simple

vulnerable scenarios with CWEs, their performance in

repairing real-world scenarios was insufficient compared to

state-of-the-art methods that do not utilize LLMs.

3.2 Fine-tuning LLMs for Vulnerability Repair

Fu et al. [4] propose VulRepair, a T5-based automated

vulnerability repair approach that addresses various

limitations of the prior transformer-based approach, VRepair

[5]. The primary constraints of VRepair included its limited

capacity to learn the relative position information of code

tokens within the input sequences and inability to generate

novel tokens that were not present in a vulnerable function

but are introduced in the vulnerability repair.

As illustrated if fig. 2, VulRepair consists of training and

inference phase. In step 1, subword tokenization is performed

using the Byte-Pairs Encoding (BPE) resolving the issue of

generating new tokens. In step 2, VulRepair model is built

based on the T5 architecture. It generates embedding vectors

for each token in the subword-tokenized function and

combines them into a matrix (2a). Here, to encode the

positional information of each code token within the function,

VulRepair utilizes relative position embedding to overcome

the limitation of VRepair. Next, the matrix is passes through

the T5 encoder stack (2b) and the output of the last encoder

fed into each decoder (2c). Lastly, the output of the decoder

stack goes through a linear layer with softmax activation to

produce the vocabulary's probability distribution (2d).

During the training phase, the T5-based VulRepair model is

fine-tuned using the vulnerability repairs dataset (i.e. CVE-

Fixes [6] and Big-Vul [7]). The fine-tuned model is used for

generating software vulnerability repairs during the inference

phase.

For evaluation, VulRepair was compared to VRepair with

the evaluation metric of %Perfect Prediction. VulRepair

achieved a Perfect Prediction of 44%, 21% more accurate

than the VRepair. VulRepair demonstrates the ability to

repair 745 out of 1,706 widely recognized real-world

vulnerabilities.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 758 -

3.3 Utilizing Multiple LLMs for Better Vulnerability

Repair

Zhou et al. [8] introduce VulMaster, a CodeT5-based

automatic vulnerability repair method designed to handle the

entire vulnerable code, regardless of its length. VulMaster

has three key components. The first component is its’ Fusion-

in-Decoder (FiD) framework to overcome the input length

constraint of Transformer-based models. Next, to capture the

structural characteristics of the vulnerable code, VulMaster

incorporates the Abstract Syntax Tree (AST) as part of its

input. Lastly, it extensively leverages expert knowledge from

the CWE website to further enhance its repair capabilities. To

utilize the expert knowledge of the CWE system, VulMaster

provide a novel CWE knowledge Extraction method. In

CWE web pages, besides CWE names, there are vulnerable

code examples for each CWE. However, the knowledge of

“how to fix” the security bugs are in natural language texts

rather than source code. Here, ChatGPT is utilized to

generate various correct fixes for the vulnerable code

examples. This information, the potential fixes generated by

ChatGPT, is also used as the input of the codeT5-based repair

model to provide detailed guidance. For evaluation,

VulMaster was compared with VulRepair [4] and VRepair

[5]. Extensive evaluation demonstrates the effectiveness of

VulMaster.

4. Conclusion and Future Work

Several approaches for utilizing the large language models

in code vulnerability repair were introduced. Although the

SOTA repair method, VulMaster, outperforms all the

previous approaches, VRepair and VulRepair, the perfect

prediction score remains low. Various tuning methods for

LLMs can be applied to further enhance the bug fixing ability.

Moreover, most vulnerability repair tasks are evaluated

using the PP(Perfect Prediction) metric and the BLEU score

which measure the similarity between the generated patch

and the ground truth. However, BLEU scores do not validate

the correctness of the patches and PP scores disregard the

possibility of other valid outcomes. Thus, future work should

consider evaluating generated patches with plausible metrics

(e.g. unit tests).

ACKNOWLEDGEMENT

This work was supported by the BK21 FOUR program of the

Education and Research Program for Future ICT Pioneers,

Seoul National University in 2024 and was supported by the

National Research Foundation of Korea (NRF) grant funded

by the Korea government (MSIT) (RS-2023-00277326). Also,

this work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)

under the artificial intelligence semiconductor support

program to nurture the best talents (IITP-2023-RS-2023-

00256081) grant funded by the Korea government(MSIT)

and was supported by Inter-University Semiconductor

Research Center (ISRC).

References

[1] CVE Community. 2023. Official website of Common

Vulnerabilities and Expo-sures. https://www.cve.org/.

[2] ED TARGETT. 2022. We analysed 90,000+ software

vulnerabilities: Here’s what we learned.

https://www.thestack.technology/analysis-of-cves-in-

2022-software-vulnerabilities-cwes-most-dangerous/.

[3] H. Pearce, B. Tan, B. Ahmad, R. Karri and B. Dolan-

Gavitt, "Examining Zero-Shot Vulnerability Repair with

Large Language Models," in 2023 IEEE Symposium on

Security and Privacy (SP), San Francisco, CA, USA,

2023 pp. 2339-2356.

[4] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van

Nguyen, and Dinh Phung. VulRepair: a T5-based

automated software vulnerability repair. In Proceedings

of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of

Software Engineering. 935–947.

[5] Zimin Chen, Steve Kommrusch, and Martin Monperrus.

2022. Neural transfer learning for repairing security

vulnerabilities in c code. IEEE Transactions on Software

Engineering 49, 1 (2022), 147–165.

[6] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021.

CVEfixes: automated collection of vulnerabilities and

their fixes from open-source software. In Proceedings of

the 17th International Conference on Predictive Models

and Data Analytics in Software Engineering. 30-39.

[7] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen.

2020. AC/C++ code vulnerability dataset with code

changes and CVE summaries. In Proceedings of the 17th

International Conference on Mining Software

Repositories. 508-512.

[8] Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, and

David Lo. Out of Sight, Out of Mind: Better Automatic

Vulnerability Repair by Broadening Input Ranges and

Sources. In 2024 IEEE/ACM 46th International

Conference on Software Engineering (ICSE). IEEE

Computer Society, 872–872.

ASK 2024 학술발표대회 논문집 (31권 1호)

- 759 -

