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Abstract 

Software vulnerabilities represent security weaknesses in software systems that attackers exploit for malicious 

purposes, resulting in potential system compromise and data breaches. Despite the increasing prevalence of these 

vulnerabilities, manual repair efforts by security analysts remain time-consuming. The emergence of deep learning 

technologies has provided promising opportunities for automating software vulnerability repairs, but existing AI-

based approaches still face challenges in effectively handling complex vulnerabilities. This paper explores the 

potential of large language models (LLMs) in addressing these limitations, examining their performance in code 

vulnerability repair tasks. It introduces the latest research on utilizing LLMs to enhance the efficiency and 

accuracy of fixing security bugs. 

 

1. Introduction 

Software vulnerabilities refer to security flaws, glitches, or 

weaknesses within software systems that attackers can 

exploit for malicious purposes. Specifically, attackers may 

exploit unaddressed security vulnerabilities in software to 

launch attacks and compromise a system to cause system 

damage or steal confidential data, leading to significant 

economic damage. Security vulnerabilities are becoming 

more widespread in contemporary software, with significant 

consequences for our society. Common Vulnerabilities and 

Exposures [1] reported a record-breaking discovery of 

26,448 software vulnerabilities in 2022, marking a notable 

59% increase from 2021 [2]. Thus, it is crucial to defend 

against software vulnerabilities through code repair. 

Unfortunately, it requires security analysts to invest 

substantial effort in manually addressing or repairing these 

vulnerable functions.  

The advancements in deep learning have opened avenues 

for automatic approaches to software vulnerability repair, 

enabling efficient learning of the transition from vulnerable 

code to corrected code. Although researchers have proposed 

various Artificial Intelligence based approaches to assist 

under-resourced security analysts in better understanding the 

characteristics of vulnerabilities and finding them more 

quickly, these approaches still suffer from inaccurate repair 

results and struggle handling lengthy vulnerable code. 

Recently, with large language models (LLMs) gaining 

popularity in various code intelligence tasks, there has been 

an increasing focus on using LLMs for code vulnerability 

repairs, aiming to address the limitations of previous AI-

based approaches. Various recent works examine the repair 

capability of LLMs and utilize them to achieve state-of-the-

art performance in learning-based code vulnerability repair. 

 

2. Large Language Model 

LLMs have gained widespread adoption in Natural 

Language Processing (NLP) owing to their remarkable 

performance, typically following the Transformer 

architecture and undergoing training on extensive datasets 

via self-supervised learning. Recent LLMs like ChatGPT and 

GPT-4 have demonstrated impressive performance in various 

code intelligence tasks. Thus, considerable efforts have been 

made towards leveraging the capability of LLMs for code 

generation or repair tasks. 

(fig 1) The Testing Framework of [3] 
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3. Code Vulnerability Repair via Large Language 

Models 

A code vulnerability repair task involves identifying and 

fixing security vulnerabilities present in software code. These 

vulnerabilities can range from simple issues like improper 

input validation to more complex problems such as buffer 

overflows or injection attacks. The vulnerability repair task 

involves analyzing the codebase, identifying vulnerable areas, 

and applying appropriate fixes to mitigate security risks. 

Recent works typically utilize large language models for 

applying correct patches for identified security bugs. 

 

3.1 Zero-shot Evaluation of Utilizing LLMs for 

Vulnerability Repair 

Pearce et al. [3] provide the first zero-shot evaluation of 

LLMs for generating security fixes, demonstrating that pre-

trained models can produce security fixes without additional 

training in simple vulnerable scenarios. This work focuses on 

understanding the repair ability of LLMs. As depicted in Fig. 

1, the testing framework utilizes existing security tools to 

detect bugs within programs. These bug reports and the 

original programs are converted into prompts for producing 

potential fixes. Subsequently, the replacement code generated 

by the LLM is evaluated using external tools to determine if 

the suggestions effectively repair the original vulnerable 

program. The authors analyze and compare various prompts, 

contextual cues, and model parameters (i.e. temperature, 

sampling strategy) to utilize LLMs for generating repaired 

versions of insecure programs. Their main focus lies in 

engineering prompts, as the output of LLMs is highly 

sensitive to how prompts are provided; one word difference 

in the prompt could lead to substantial performance drop. 

They examine five different prompt templates to get the best 

out of models. Five reasonable templates with varying 

amount of context were tested. These templates range from 

providing no context to the LLM to offering extensive 

comments and hints, which may include subtle variations in 

wording and word order (such as 'fixed' vs. 'bugfix'), as well 

as the option to include or exclude the faulty code. Among 

various LLMs, OpenAI Codex models consistently 

outperformed others in generating secure and functionally  

 

correct patches. Moreover, LLMs tend to perform better with 

more context provided in the prompt. However, while black-

box LLMs often produced correct outputs for simple 

vulnerable scenarios with CWEs, their performance in 

repairing real-world scenarios was insufficient compared to 

state-of-the-art methods that do not utilize LLMs. 

 

3.2 Fine-tuning LLMs for Vulnerability Repair 

Fu et al. [4] propose VulRepair, a T5-based automated 

vulnerability repair approach that addresses various 

limitations of the prior transformer-based approach, VRepair 

[5]. The primary constraints of VRepair included its limited 

capacity to learn the relative position information of code 

tokens within the input sequences and inability to generate 

novel tokens that were not present in a vulnerable function 

but are introduced in the vulnerability repair.  

As illustrated if fig. 2, VulRepair consists of training and 

inference phase. In step 1, subword tokenization is performed 

using the Byte-Pairs Encoding (BPE) resolving the issue of 

generating new tokens. In step 2, VulRepair model is built 

based on the T5 architecture. It generates embedding vectors 

for each token in the subword-tokenized function and 

combines them into a matrix (2a). Here, to encode the 

positional information of each code token within the function, 

VulRepair utilizes relative position embedding to overcome 

the limitation of VRepair. Next, the matrix is passes through 

the T5 encoder stack (2b) and the output of the last encoder 

fed into each decoder (2c). Lastly, the output of the decoder 

stack goes through a linear layer with softmax activation to 

produce the vocabulary's probability distribution (2d). 

During the training phase, the T5-based VulRepair model is 

fine-tuned using the vulnerability repairs dataset (i.e. CVE-

Fixes [6] and Big-Vul [7]). The fine-tuned model is used for 

generating software vulnerability repairs during the inference 

phase.  

For evaluation, VulRepair was compared to VRepair with 

the evaluation metric of %Perfect Prediction. VulRepair 

achieved a Perfect Prediction of 44%, 21% more accurate 

than the VRepair. VulRepair demonstrates the ability to 

repair 745 out of 1,706 widely recognized real-world 

vulnerabilities. 
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3.3 Utilizing Multiple LLMs for Better Vulnerability 

Repair 

Zhou et al. [8] introduce VulMaster, a CodeT5-based 

automatic vulnerability repair method designed to handle the 

entire vulnerable code, regardless of its length. VulMaster 

has three key components. The first component is its’ Fusion-

in-Decoder (FiD) framework to overcome the input length 

constraint of Transformer-based models. Next, to capture the 

structural characteristics of the vulnerable code, VulMaster 

incorporates the Abstract Syntax Tree (AST) as part of its 

input. Lastly, it extensively leverages expert knowledge from 

the CWE website to further enhance its repair capabilities. To 

utilize the expert knowledge of the CWE system, VulMaster 

provide a novel CWE knowledge Extraction method. In 

CWE web pages, besides CWE names, there are vulnerable 

code examples for each CWE. However, the knowledge of 

“how to fix” the security bugs are in natural language texts 

rather than source code. Here, ChatGPT is utilized to 

generate various correct fixes for the vulnerable code 

examples. This information, the potential fixes generated by 

ChatGPT, is also used as the input of the codeT5-based repair 

model to provide detailed guidance. For evaluation, 

VulMaster was compared with VulRepair [4] and VRepair 

[5]. Extensive evaluation demonstrates the effectiveness of 

VulMaster. 

 

4. Conclusion and Future Work 

Several approaches for utilizing the large language models 

in code vulnerability repair were introduced. Although the 

SOTA repair method, VulMaster, outperforms all the 

previous approaches, VRepair and VulRepair, the perfect 

prediction score remains low. Various tuning methods for 

LLMs can be applied to further enhance the bug fixing ability.  

Moreover, most vulnerability repair tasks are evaluated 

using the PP(Perfect Prediction) metric and the BLEU score 

which measure the similarity between the generated patch 

and the ground truth. However, BLEU scores do not validate 

the correctness of the patches and PP scores disregard the 

possibility of other valid outcomes. Thus, future work should 

consider evaluating generated patches with plausible metrics 

(e.g. unit tests). 
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