• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.032 seconds

Development of Driver's Safety/Danger Status Cognitive Assistance System Based on Deep Learning (딥러닝 기반의 운전자의 안전/위험 상태 인지 시스템 개발)

  • Miao, Xu;Lee, Hyun-Soon;Kang, Bo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2018
  • In this paper, we propose Intelligent Driver Assistance System (I-DAS) for driver safety. The proposed system recognizes safety and danger status by analyzing blind spots that the driver cannot see because of a large angle of head movement from the front. Most studies use image pre-processing such as face detection for collecting information about the driver's head movement. This not only increases the computational complexity of the system, but also decreases the accuracy of the recognition because the image processing system dose not use the entire image of the driver's upper body while seated on the driver's seat and when the head moves at a large angle from the front. The proposed system uses a convolutional neural network to replace the face detection system and uses the entire image of the driver's upper body. Therefore, high accuracy can be maintained even when the driver performs head movement at a large angle from the frontal gaze position without image pre-processing. Experimental result shows that the proposed system can accurately recognize the dangerous conditions in the blind zone during operation and performs with 95% accuracy of recognition for five drivers.

Transition of the Kazakh Writing System from Cyrillic to Latin

  • Kim, Bora
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.12-19
    • /
    • 2018
  • This article aims to discuss the transition of the Kazakh writing system from Cyrillic to Latin. First, the study investigates the relationship between the Kazakh Cyrillic alphabet and phonology, in order to linguistically evaluate the efficiency of the writing system. Second, the process of determining the Kazakh Latin alphabet is discussed in terms of the Kazakh phonological system. Third, the factors that determined the Latin alphabet of Kazakh language are analyzed. In Kazakh, the phonemic system is subject to controversy among linguists, but it can be said that the phonological system basically follows the one-to-one correspondence to the Russian and Kazakh phonemes. As for the depth of orthographies, Kazakh Cyrillic writing system is not based on the shallow orthographies, so it incorporates morphophonemic information to make skilled readers understand easier. The political and social aspects are considered as a cause of the alphabet change. Although there are studies suggesting the conversion of the writing system is caused by the extrinsic factors rather than the intrinsic factors, the five criteria of Smalley (1964), which compromise the intrinsic and extrinsic factors, are also persuasive. The five factors are 1) Maximum motivation for the learner, 2) Maximum representation of speech, 3) Maximum ease of learning, 4) Maximum transfer, 5) Maximum ease of reproduction.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Speaker Verification Model Using Short-Time Fourier Transform and Recurrent Neural Network (STFT와 RNN을 활용한 화자 인증 모델)

  • Kim, Min-seo;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1393-1401
    • /
    • 2019
  • Recently as voice authentication function is installed in the system, it is becoming more important to accurately authenticate speakers. Accordingly, a model for verifying speakers in various ways has been suggested. In this paper, we propose a new method for verifying speaker verification using a Short-time Fourier Transform(STFT). Unlike the existing Mel-Frequency Cepstrum Coefficients(MFCC) extraction method, we used window function with overlap parameter of around 66.1%. In this case, the speech characteristics of the speaker with the temporal characteristics are studied using a deep running model called RNN (Recurrent Neural Network) with LSTM cell. The accuracy of proposed model is around 92.8% and approximately 5.5% higher than that of the existing speaker certification model.

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.

A Preliminary Study of the Development of DNN-Based Prediction Model for Quality Management (DNN을 활용한 건설현장 품질관리 시스템 개발을 위한 기초연구)

  • Suk, Janghwan;Kwon, Woobin;Lee, Hak-Ju;Lee, Chanwoo;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.223-224
    • /
    • 2022
  • The occurrence of defect, one of the major risk elements, gives rise to construction delays and additional costs. Although construction companies generally prefer to use a method of identifying and classifying the causes of defects, a system for predicting the rise of defects becomes important matter to reduce this harmful issue. However, the currently used methods are kinds of reactive systems that are focused on the defects which occurred already, and there are few studies on the occurrence of defects with prediction systems. This paper is about preliminary study on the development of judgemental algorithm that informs us whether additional works related to defect issue are needed or not. Among machine learning techniques, deep neural network was utilized as prediction model which is a major component of algorithm. It is the most suitable model to be applied to the algorithm when there are 8 hidden layers and the average number of nodes in each hidden layer is 70. Ultimately, the algorithm can identify and defects that may arise in later and contribute to minimize defect frequency.

  • PDF

A Study on Synthetic Dataset Generation Method for Maritime Traffic Situation Awareness (해상교통 상황인지 향상을 위한 합성 데이터셋 구축방안 연구)

  • Youngchae Lee;Sekil Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.69-80
    • /
    • 2023
  • Ship collision accidents not only cause loss of life and property damage, but also cause marine pollution and can become national disasters, so prevention is very important. Most of these ship collision accidents are caused by human factors due to the navigation officer's lack of vigilance and carelessness, and in many cases, they can be prevented through the support of a system that helps with situation awareness. Recently, artificial intelligence has been used to develop systems that help navigators recognize the situation, but the sea is very wide and deep, so it is difficult to secure maritime traffic datasets, which also makes it difficult to develop artificial intelligence models. In this paper, to solve these difficulties, we propose a method to build a dataset with characteristics similar to actual maritime traffic datasets. The proposed method uses segmentation and inpainting technologies to build a foreground and background dataset, and then applies compositing technology to create a synthetic dataset. Through prototype implementation and result analysis of the proposed method, it was confirmed that the proposed method is effective in overcoming the difficulties of dataset construction and complementing various scenes similar to reality.

A DQN-based Two-Stage Scheduling Method for Real-Time Large-Scale EVs Charging Service

  • Tianyang Li;Yingnan Han;Xiaolong Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.551-569
    • /
    • 2024
  • With the rapid development of electric vehicles (EVs) industry, EV charging service becomes more and more important. Especially, in the case of suddenly drop of air temperature or open holidays that large-scale EVs seeking for charging devices (CDs) in a short time. In such scenario, inefficient EV charging scheduling algorithm might lead to a bad service quality, for example, long queueing times for EVs and unreasonable idling time for charging devices. To deal with this issue, this paper propose a Deep-Q-Network (DQN) based two-stage scheduling method for the large-scale EVs charging service. Fine-grained states with two delicate neural networks are proposed to optimize the sequencing of EVs and charging station (CS) arrangement. Two efficient algorithms are presented to obtain the optimal EVs charging scheduling scheme for large-scale EVs charging demand. Three case studies show the superiority of our proposal, in terms of a high service quality (minimized average queuing time of EVs and maximized charging performance at both EV and CS sides) and achieve greater scheduling efficiency. The code and data are available at THE CODE AND DATA.

Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island (딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발)

  • Park, Jaesung;Jeong, Jiho;Jeong, Jina;Kim, Ki-Hong;Shin, Jaehyeon;Lee, Dongyeop;Jeong, Saebom
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.697-723
    • /
    • 2022
  • Data-driven models to predict groundwater levels 30 days in advance were developed for 12 groundwater monitoring stations in the middle-Jeju watershed, Jeju Island. Stacked long short-term memory (stacked-LSTM), a deep learning technique suitable for time series forecasting, was used for model development. Daily time series data from 2001 to 2022 for precipitation, groundwater usage amount, and groundwater level were considered. Various models were proposed that used different combinations of the input data types and varying lengths of previous time series data for each input variable. A general procedure for deep-learning-based model development is suggested based on consideration of the comparative validation results of the tested models. A model using precipitation, groundwater usage amount, and previous groundwater level data as input variables outperformed any model neglecting one or more of these data categories. Using extended sequences of these past data improved the predictions, possibly owing to the long delay time between precipitation and groundwater recharge, which results from the deep groundwater level in Jeju Island. However, limiting the range of considered groundwater usage data that significantly affected the groundwater level fluctuation (rather than using all the groundwater usage data) improved the performance of the predictive model. The developed models can predict the future groundwater level based on the current amount of precipitation and groundwater use. Therefore, the models provide information on the soundness of the aquifer system, which will help to prepare management plans to maintain appropriate groundwater quantities.

A Study on Safety Management Improvement System Using Similarity Inspection Technique (유사도검사 기법을 이용한 안전관리 개선시스템 연구)

  • Park, Koo-Rack
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.23-29
    • /
    • 2018
  • To reduce the accident rate caused by the delay of corrective action, which is common in the construction site, in order to shorten the time from correcting the existing system to the corrective action, I used a time similarity check to inform the inspectors of the problem in real time, modeling the system so that corrective action can be performed immediately on site, and studied a system that can actively cope with safety accidents. The research result shows that there is more than 90% opening effect and more than 60% safety accident reduction rate. I will continue to study more effective system combining voice recognition and deep learning based on this system.