• Title/Summary/Keyword: Deep Learning SW Technology

검색결과 10건 처리시간 0.029초

Robust Deep Age Estimation Method Using Artificially Generated Image Set

  • Jang, Jaeyoon;Jeon, Seung-Hyuk;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.643-651
    • /
    • 2017
  • Human age estimation is one of the key factors in the field of Human-Robot Interaction/Human-Computer Interaction (HRI/HCI). Owing to the development of deep-learning technologies, age recognition has recently been attempted. In general, however, deep learning techniques require a large-scale database, and for age learning with variations, a conventional database is insufficient. For this reason, we propose an age estimation method using artificially generated data. Image data are artificially generated through 3D information, thus solving the problem of shortage of training data, and helping with the training of the deep-learning technique. Augmentation using 3D has advantages over 2D because it creates new images with more information. We use a deep architecture as a pre-trained model, and improve the estimation capacity using artificially augmented training images. The deep architecture can outperform traditional estimation methods, and the improved method showed increased reliability. We have achieved state-of-the-art performance using the proposed method in the Morph-II dataset and have proven that the proposed method can be used effectively using the Adience dataset.

예비수학교사의 AI 소양과 SW 역량 계발에 관한 사례 연구 (A Case Study on the Pre-service Math Teacher's Development of AI Literacy and SW Competency)

  • 김동화;김승호
    • East Asian mathematical journal
    • /
    • 제39권2호
    • /
    • pp.93-117
    • /
    • 2023
  • The aim of this study is to explore the pre-service math teachers' characteristics of education to develop their AI literacy and SW competency, and to derive some implications. We conducted a 14-hours AI and SW education program for pre-service teachers with theory and practice, and an analysis on class observation data, video frames of classes and interview, Python programming assignments and papers. The results of this case study for 3 pre-service teachers are as follows. First, two students understood artificial neural network and deep learning system accurately, furthermore, all students conducted a couple of explorations related with performance improvement of deep learning system with interest. Second, coding and exploration activities using Python improved students' computational thinking as well as SW competency, which help them give convergence education in the future. Third, they responded positively to the necessity of AI literacy and SW competency development, and to applying coding to math class. Lastly, it's necessary to endeavor to give a coding education to the student's eye level according to his or her prerequisite and to ease the burden of student's studying AI technology.

딥러닝 SW 기술을 이용한 임베디드형 융합 CCTV 카메라 (Convergence CCTV camera embedded with Deep Learning SW technology)

  • 손경식;김종원;임재현
    • 한국융합학회논문지
    • /
    • 제10권1호
    • /
    • pp.103-113
    • /
    • 2019
  • 차량 번호판 인식 카메라는 차량 번호판 내 문자와 숫자의 인식을 위하여 대상 차량의 이미지 취득을 목적으로 하는 전용 카메라를 말하며 대부분 단독 사용보다는 서버와 영상 분석 모듈과 결합된 시스템의 일부로 적용된다. 그러나 차량 번호판 인식을 위한 시스템 구축을 위해서는 취득 영상 관리 및 분석 지원을 위한 서버와 문자, 숫자의 추출 및 인식을 위한 영상 분석 모듈을 함께 구성하여야 하므로 구축을 위한 설비가 필요하고 초기 비용이 많이 든다는 문제점이 있다. 이에 본 연구에서는 카메라의 기능을 차량 번호판 인식에만 한정하지 않고 방범 기능을 함께 수행할 수 있도록 확장하고 카메라 단독으로도 두가지 기능 수행이 가능한 Edge Base의 임베디드형 융합 카메라를 개발한다. 임베디드형 융합 카메라는 선명한 영상 취득 및 빠른 데이터 전송을 위해 고해상도 4K IP 카메라를 탑재하고 오픈소스 신경망 알고리즘 기반의 다중 객체 인식을 위한 딥러닝 SW인 YOLO를 적용하여 차량 번호판 영역을 추출한 후 차량 번호판 내의 문자와 숫자를 검출하고 검출 정확도와 인식 정확도를 검증하여 CCTV 방범 기능과 차량 번호 인식 기능이 가능한지를 확인 하였다.

Real-time Smoke Detection Research with False Positive Reduction using Spatial and Temporal Features based on Faster R-CNN

  • Lee, Sang-Hoon;Lee, Yeung-Hak
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1148-1155
    • /
    • 2020
  • Fire must be extinguished as quickly as possible because they cause a lot of economic loss and take away precious human lives. Especially, the detection of smoke, which tends to be found first in fire, is of great importance. Smoke detection based on image has many difficulties in algorithm research due to the irregular shape of smoke. In this study, we introduce a new real-time smoke detection algorithm that reduces the detection of false positives generated by irregular smoke shape based on faster r-cnn of factory-installed surveillance cameras. First, we compute the global frame similarity and mean squared error (MSE) to detect the movement of smoke from the input surveillance camera. Second, we use deep learning algorithm (Faster r-cnn) to extract deferred candidate regions. Third, the extracted candidate areas for acting are finally determined using space and temporal features as smoke area. In this study, we proposed a new algorithm using the space and temporal features of global and local frames, which are well-proposed object information, to reduce false positives based on deep learning techniques. The experimental results confirmed that the proposed algorithm has excellent performance by reducing false positives of about 99.0% while maintaining smoke detection performance.

StyleGAN 딥러닝 기술을 활용한 카메라 기반 캐릭터 생성 및 모션 제어 시스템 개발 (Development of Camera-based Character Creation and Motion Control System using StyleGAN Deep Learning Technology)

  • 이정훈;김주형;신동현;양재형;장문수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.934-936
    • /
    • 2022
  • 현재 사회적인(COVID-19) 영향으로 메타버스에 대한 수요가 급증하였지만, 메타버스 플랫폼 진입을 지원하는 XR(AR/VR) 장비의 높은 가격대와 전문성 요구로 폭넓은 수요층을 포괄하기 어려운 상황이다. 본 논문에서는 이러한 수요층의 어려움을 개선하고자 웹 캠이나 스마트폰 카메라로 생성된 개인의 사진 이미지를 StyleGAN 딥러닝 기술과 접목시켜 캐릭터를 생성해 Mediapipe를 활용하여 모션 측정 및 제어를 처리하는 서비스를 제안하여 메타버스 시장의 대중화에 기여하고자 한다.

Image classification and captioning model considering a CAM-based disagreement loss

  • Yoon, Yeo Chan;Park, So Young;Park, Soo Myoung;Lim, Heuiseok
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.67-77
    • /
    • 2020
  • Image captioning has received significant interest in recent years, and notable results have been achieved. Most previous approaches have focused on generating visual descriptions from images, whereas a few approaches have exploited visual descriptions for image classification. This study demonstrates that a good performance can be achieved for both description generation and image classification through an end-to-end joint learning approach with a loss function, which encourages each task to reach a consensus. When given images and visual descriptions, the proposed model learns a multimodal intermediate embedding, which can represent both the textual and visual characteristics of an object. The performance can be improved for both tasks by sharing the multimodal embedding. Through a novel loss function based on class activation mapping, which localizes the discriminative image region of a model, we achieve a higher score when the captioning and classification model reaches a consensus on the key parts of the object. Using the proposed model, we established a substantially improved performance for each task on the UCSD Birds and Oxford Flowers datasets.

YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법 (Estimation of fruit number of apple tree based on YOLOv5 and regression model)

  • 곽희진;정윤주;전익조;이철희
    • 전기전자학회논문지
    • /
    • 제28권2호
    • /
    • pp.150-157
    • /
    • 2024
  • 본 논문은 딥러닝 기반 객체 탐지 모델과 다항 회귀모델을 이용하여 사과나무에 열린 사과의 개수를 예측할 수 있는 새로운 알고리즘을 제안한다. 사과나무에 열린 사과의 개수를 측정하면 사과 생산량을 예측할 수 있고, 농산물 재해 보험금 산정을 위한 손실을 평가하는 데에도 활용할 수 있다. 사과 착과량 측정을 위해 사과나무의 앞면과 뒷면을 촬영하였다. 촬영된 사진에서 사과를 식별하여 라벨링한 데이터 세트를 구축하였고, 이 데이터 세트를 활용하여 1단계 객체 탐지 방식의 CNN 모델을 학습시켰다. 그런데 사과나무에서 사과가 나뭇잎, 가지 등으로 가려진 경우 영상에 포착되지 않아 영상 인식 기반의 딥러닝 모델이 해당 사과를 인식하거나 추론하는 것이 어렵다. 이 문제를 해결하기 위해, 우리는 두 단계로 이루어진 추론 과정을 제안한다. 첫 번째 단계에서는 영상 기반 딥러닝 모델을 사용하여 사과나무의 양쪽에서 촬영한 사진에서 각각의 사과 개수를 측정한다. 두 번째 단계에서는 딥러닝 모델로 측정한 사과 개수의 합을 독립변수로, 사람이 실제로 과수원을 방문하여 카운트한 사과 개수를 종속변수로 설정하여 다항 회귀 분석을 수행한다. 본 논문에서 제안하는 2단계 추론 시스템의 성능 평가 결과, 각 사과나무에서 사과 개수를 측정하는 평균 정확도가 90.98%로 나타났다. 따라서 제안된 방법은 수작업으로 사과의 개수를 측정하는 데 드는 시간과 비용을 크게 절감할 수 있다. 또한, 이 방법은 딥러닝 기반 착과량 예측의 새로운 기반 기술로 관련 분야에서 널리 활용될 수 있을 것이다.

인공지능을 이용한 과일 가격 예측 모델 연구 (Fruit price prediction study using artificial intelligence)

  • 임진모;김월용;변우진;신승중
    • 문화기술의 융합
    • /
    • 제4권2호
    • /
    • pp.197-204
    • /
    • 2018
  • 현재 우리가 사는 21세기에서 가장 핫한 이슈중 하나는 AI이다. 농경사회에서 산업혁명을 통해 육체노동의 자동화를 이루었듯이 정보사회에서 SW혁명을 통해 지능정보사회가 도래햇다. Google '알파고'의 등장으로 인해 컴퓨터가 스스로 학습하고 예측하는 machine learning (머신러닝) 사례를 보면서 이제 바둑의 세계 까지 인간이 컴퓨터를 이길 수 없는, 다시 말하면 컴퓨터가 인간을 뛰어넘는 시대가 왔다. 기계학습ML(machine learning)은 인공 지능 분야로, 인공지능 컴퓨터가 인간을 뛰어넘는 시대가 도래했다. 기계학습ML(machine learning)은 인공지능의 분야로, 인공지능 컴퓨터가 혼자 학습 하도록 알고리즘 기술 개발을 하는 뜻을 의미하는데, 많은 기업들이 머신러닝을 바둑의 세계까지 인간이 컴퓨터를 이길 수 없는, 다시 말하면 컴퓨터가 인간을 뛰어넘는 시대가 왔다. 많은 기업들이 머신러닝을 용하는데 그 예로는 Facebook에서 이미지를 계속 학습하여 나중에 그 이미지가 누구인지 알려주는 것도 머신러닝의 한 사례이다. 또한 구글의 데이터 센터 최적화를 위해서 효율적인 에너지 사용 모델 구축을 위해 neural network(신경망)을 활용하였다. 또 다른 사례로 마이크로소프트의 실시간 통역 모델은 번역 학습을 통해 언어관련 인풋 데이터가 증가할수록 더 정교한 번역을 해주는 모델이다. 이처럼 많은 분야에 머신러닝이 점차 쓰이면서 이제 우리 21세기 사회에서 앞으로 나아가려면 AI산업으로 뛰어들어야 한다.

깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구 (A Study on Tire Surface Defect Detection Method Using Depth Image)

  • 김현석;고동범;이원곡;배유석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권5호
    • /
    • pp.211-220
    • /
    • 2022
  • 최근 4차 산업혁명으로 촉발된 스마트공장에 관한 연구가 활발히 진행되고 있다. 이에 따라 제조업에서는 강건한 성능의 딥러닝 기술을 바탕으로 생산성 향상과 품질 향상을 위해 다양한 연구를 진행 중이다. 본 논문은 타이어 제조공정의 육안검사 단계에서 타이어 표면 결함을 검출하는 방법에 관한 연구로서 3D 카메라를 통해 취득한 깊이 이미지를 이용한 타이어 표면 결함 검출 방법을 소개한다. 본 연구에서 다루는 타이어 표면 깊이 이미지는 타이어 표면의 얕은 깊이로 인해 발생되는 낮은 깊이 대비와 데이터 취득 환경으로 인해 기준 깊이 값의 차이가 발생하는 문제가 있다. 그리고 제조업의 특성상 검출 성능과 함께 실시간으로 처리될 수 있는 성능을 지닌 알고리즘이 요구된다. 따라서, 본 논문에서는 타이어 표면 결함 검출 알고리즘이 복잡한 알고리즘 파이프라인으로 구성되지 않도록 상대적으로 단순한 방법들을 통해 깊이 이미지를 정규화하는 방법을 연구하였으며 검출 성능과 속도를 모두 만족할 수 있는 딥러닝 방법인 YOLO V3를 이용하여 일반적인 정규화 방법과 본 논문에서 제안하는 정규화 방법의 비교 실험을 진행하였다. 실험의 결과로 본 논문에서 제안한 정규화 방법으로 mAP 0.5 기준 약 7% 성능이 향상된 것을 확인하였으며 본 논문에서 제시한 방법이 효과적임을 보였다.

초·중등 AI 교육을 위한 데이터 리터러시 정의 및 구성 요소 연구 (A Study of the Definition and Components of Data Literacy for K-12 AI Education)

  • 김슬기;김태영
    • 정보교육학회논문지
    • /
    • 제25권5호
    • /
    • pp.691-704
    • /
    • 2021
  • AI 기술의 발달은 우리 삶의 큰 변화를 가져왔다. 생활에서부터 사회, 경제에 이르기까지 AI의 영향력이 커짐에 따라 AI와 데이터 교육에 대한 중요성이 함께 커지고 있다. 이에 OECD 교육 연구 보고서 및 다양한 국내 정보과 교육과정 연구에서 데이터와 데이터 리터러시를 다루고 필수 역량으로 제시하고 있다. 하지만 국내외 관련 연구를 살펴보면 데이터 리터러시에 대한 정의와 구성 요소의 내용과 범위가 연구자에 따라 다른 것을 알 수 있다. 이에 데이터 리터러시 관련 주요 연구의 정의와 구성 요소에 활용된 단어 빈도 분석과 함께 Word2Vec 딥러닝 자연어 처리 방법을 통해 단어의 관계와 의미 유사도를 분석하여 객관적이고 포괄적인 정의와 구성 요소를 제시하였다. 그리고 전문가 검토를 통해 수정 보완하여 데이터 리터러시를 '문제를 해결하기 위해 데이터를 수집하고 분석 및 활용하여 정보로 처리하는 지식 구성과 의사소통의 기초 능력'으로 정의하였으며, '지식, 기능, 가치와 태도'로 각각의 구성 요소를 범주화하였다. 본 연구를 통해 도출된 데이터 리터러시의 정의와 구성 요소가 AI 교육 체계화와 학생들의 미래 역량 관련 교육 연구에 좋은 기초 자료가 될 수 있기를 기대한다.