• Title/Summary/Keyword: Deep Learning Model

Search Result 2,744, Processing Time 0.028 seconds

Development of a Deep Learning Model for Detecting Fake Reviews Using Author Linguistic Features (작성자 언어적 특성 기반 가짜 리뷰 탐지 딥러닝 모델 개발)

  • Shin, Dong Hoon;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.01-23
    • /
    • 2022
  • Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.

A Study on Deep Learning Model-based Object Classification for Big Data Environment

  • Kim, Jeong-Sig;Kim, Jinhong
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • Recently, conceptual information model is changing fast, and these changes are coming about as a result of individual tendency, social cultural, new circumstances and societal shifts within big data environment. Despite the data is growing more and more, now is the time to commit ourselves to the development of renewable, invaluable information of social/live commerce. Because we have problems with various insoluble data, we propose about deep learning prediction model-based object classification in social commerce of big data environment. Accordingly, it is an increased need of social commerce platform capable of handling high volumes of multiple items by users. Consequently, responding to rapid changes in users is a very significant by deep learning. Namely, promptly meet the needs of the times, and a widespread growth in big data environment with the goal of realizing in this paper.

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

Development of Convolutional Network-based Denoising Technique using Deep Reinforcement Learning in Computed Tomography (심층강화학습을 이용한 Convolutional Network 기반 전산화단층영상 잡음 저감 기술 개발)

  • Cho, Jenonghyo;Yim, Dobin;Nam, Kibok;Lee, Dahye;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.991-1001
    • /
    • 2020
  • Supervised deep learning technologies for improving the image quality of computed tomography (CT) need a lot of training data. When input images have different characteristics with training images, the technologies cause structural distortion in output images. In this study, an imaging model based on the deep reinforcement learning (DRL) was developed for overcoming the drawbacks of the supervised deep learning technologies and reducing noise in CT images. The DRL model was consisted of shared, value and policy networks, and the networks included convolutional layers, rectified linear unit (ReLU), dilation factors and gate rotation unit (GRU) in order to extract noise features from CT images and improve the performance of the DRL model. Also, the quality of the CT images obtained by using the DRL model was compared to that obtained by using the supervised deep learning model. The results showed that the image accuracy for the DRL model was higher than that for the supervised deep learning model, and the image noise for the DRL model was smaller than that for the supervised deep learning model. Also, the DRL model reduced the noise of the CT images, which had different characteristics with training images. Therefore, the DRL model is able to reduce image noise as well as maintain the structural information of CT images.

Analysis of Security Problems of Deep Learning Technology (딥러닝 기술이 가지는 보안 문제점에 대한 분석)

  • Choi, Hee-Sik;Cho, Yang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In this paper, it will analyze security problems, so technology's potential can apply to business security area. First, in order to deep learning do security tasks sufficiently in the business area, deep learning requires repetitive learning with large amounts of data. In this paper, to acquire learning ability to do stable business tasks, it must detect abnormal IP packets and attack such as normal software with malicious code. Therefore, this paper will analyze whether deep learning has the cognitive ability to detect various attack. In this paper, to deep learning to reach the system and reliably execute the business model which has problem, this paper will develop deep learning technology which is equipped with security engine to analyze new IP about Session and do log analysis and solve the problem of mathematical role which can extract abnormal data and distinguish infringement of system data. Then it will apply to business model to drop the vulnerability and improve the business performance.

Knowledge Distillation Based Continual Learning for PCB Part Detection (PCB 부품 검출을 위한 Knowledge Distillation 기반 Continual Learning)

  • Gang, Su Myung;Chung, Daewon;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.868-879
    • /
    • 2021
  • PCB (Printed Circuit Board) inspection using a deep learning model requires a large amount of data and storage. When the amount of stored data increases, problems such as learning time and insufficient storage space occur. In this study, the existing object detection model is changed to a continual learning model to enable the recognition and classification of PCB components that are constantly increasing. By changing the structure of the object detection model to a knowledge distillation model, we propose a method that allows knowledge distillation of information on existing classified parts while simultaneously learning information on new components. In classification scenario, the transfer learning model result is 75.9%, and the continual learning model proposed in this study shows 90.7%.

Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters

  • Yi, Kangwoo;Moon, Yong-Jae;Lim, Daye;Park, Eunsu;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts "Yes" or "No" for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.

  • PDF

A Deep Learning Application for Automated Feature Extraction in Transaction-based Machine Learning (트랜잭션 기반 머신러닝에서 특성 추출 자동화를 위한 딥러닝 응용)

  • Woo, Deock-Chae;Moon, Hyun Sil;Kwon, Suhnbeom;Cho, Yoonho
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.143-159
    • /
    • 2019
  • Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.

Design of Ballistic Calculation Model for Improving Accuracy of Naval Gun Firing based on Deep Learning

  • Oh, Moon-Tak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.11-18
    • /
    • 2021
  • This paper shows the applicability of deep learning algorithm in predicting target position and getting correction value of impact point in order to improve the accuracy of naval gun firing. Predicting target position, the proposed model using LSTM model and RN structure is expected to be more accurate than existing method using kalman filter. Getting correction value of impact point, the another proposed model suggests a reinforcement model that manages factors which is related in ballistic calculation as data set, and learns using the data set. The model is expected to reduce error of naval gun firing. Combining two models, a ballistic calculation model for improving accuracy of naval gun firing based on deep learning algorithm was designed.

Two Stage Deep Learning Based Stacked Ensemble Model for Web Application Security

  • Sevri, Mehmet;Karacan, Hacer
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.632-657
    • /
    • 2022
  • Detecting web attacks is a major challenge, and it is observed that the use of simple models leads to low sensitivity or high false positive problems. In this study, we aim to develop a robust two-stage deep learning based stacked ensemble web application firewall. Normal and abnormal classification is carried out in the first stage of the proposed WAF model. The classification process of the types of abnormal traffics is postponed to the second stage and carried out using an integrated stacked ensemble model. By this way, clients' requests can be served without time delay, and attack types can be detected with high sensitivity. In addition to the high accuracy of the proposed model, by using the statistical similarity and diversity analyses in the study, high generalization for the ensemble model is achieved. Within the study, a comprehensive, up-to-date, and robust multi-class web anomaly dataset named GAZI-HTTP is created in accordance with the real-world situations. The performance of the proposed WAF model is compared to state-of-the-art deep learning models and previous studies using the benchmark dataset. The proposed two-stage model achieved multi-class detection rates of 97.43% and 94.77% for GAZI-HTTP and ECML-PKDD, respectively.