• 제목/요약/키워드: Deep Learning Model

검색결과 2,840건 처리시간 0.029초

X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법 (A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images)

  • 이예은;한승화;이동규;김호준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권1호
    • /
    • pp.51-58
    • /
    • 2023
  • 본 논문에서는 X-ray 영상에서 의료 진단지표를 자동으로 추출하기 위한 조직분할 기법을 제안한다. 척추질환이나 심장질환에 대한 진단지표로서, 흉추-심장 비율이나 콥 각도 등의 지표를 산출하기 위해서는 흉부 X-ray 영상으로부터 흉추, 용골 및 심장의 영역을 정확하게 분할하는 과정이 필요하다. 본 연구에서는 이를 위하여 계층별로 영상의 고해상도의 표현과 저해상도의 특징지도로 변환되는 구조가 병렬적으로 연결되는 형태의 심층신경망 모델을 채택하였다. 이러한 구조는 영상에서 세부 조직의 상대적인 위치정보가 분할 과정에 효과적으로 반영될 수 있게 한다. 또한 픽셀 정보와 객체 정보가 다단계의 과정으로 상호 작용되는 OCR 모듈과, 네트워크의 각 채널이 서로 다른 가중치 값으로 반영되도록 하는 채널 어텐션 모듈을 결합하여 학습 성능을 개선할 수 있음을 보인다. 부수적으로 X-ray 영상에서 피사체의 위치 변화, 형태의 변형 및 크기 변이 등에도 강인한 성능을 제공하기 위하여 학습데이터를 증강하는 방법을 제시하였다. 총 145개의 인체 흉부 X-ray 영상과, 총 118개의 동물 X-ray 영상을 사용한 실험을 통하여 제안된 이론의 타당성을 평가하였다.

Faster R-CNN을 이용한 갓길 차로 위반 차량 검출 (Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN)

  • 고명진;박민주;여지호
    • 한국ITS학회 논문지
    • /
    • 제21권1호
    • /
    • pp.105-122
    • /
    • 2022
  • 최근 5년간 고속도로에서 발생한 사망 사고의 통계를 살펴보면, 고속도로 전체 사망자 중 갓길에서 발생한 사망자의 사망률이 약 3배 높은 것으로 나타났다. 이는 갓길 사고 발생 시 사고의 심각도가 매우 높다는 것을 보여주며, 갓길 차로 위반 차량을 단속하여 사고를 미연에 방지하는 것이 중요하다는 것을 시시한다. 이에 본 연구는 Faster R-CNN 기법을 활용하여 갓길 차로 위반 차량을 검출할 수 있는 방법을 제안하였다. Faster R-CNN 기법을 기반으로 차량을 탐지하고, 추가적인 판독 모듈을 구성하여 갓길 위반 여부를 판단하였다. 실험 및 평가를 위해 현실세계와 유사하게 상황을 재현할 수 있는 시뮬레이션 게임인 GTAV를 활용하였다. 이미지 형태의 학습데이터 1,800장과 평가데이터 800장을 가공 및 생성하였으며, ZFNet과 VGG16에서 Threshold 값의 변화에 따른 성능을 측정하였다. 그 결과 Threshold 0.8 기준 ZFNet 99.2%, Threshold 0.7 기준 VGG16 93.9%의 검출율을 보였고, 모델 별 평균 검출 속도는 ZFNet 0.0468초, VGG16 0.16초를 기록하여 ZFNet의 검출율이 약 7% 정도 높았으며, 검출 속도 또한 약 3.4배 빠름을 확인하였다. 이는 비교적 복잡하지 않은 네트워크에서도 입력 영상의 전처리 없이 빠른 속도로 갓길 차로 위반 차량의 검출이 가능함을 보여주며, 실제 영상자료 기반의 학습데이터셋을 충분히 확보한다면 지정 차로 위반 검출에 본 알고리즘을 활용할 수 있다는 것을 시사한다.

R2와 어텐션을 적용한 유넷 기반의 영상 간 변환에 관한 연구 (Image-to-Image Translation Based on U-Net with R2 and Attention)

  • 임소현;전준철
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.9-16
    • /
    • 2020
  • 영상 처리 및 컴퓨터 비전 분야에서 하나의 영상을 통해 다른 영상으로 재구성하거나 새로운 영상을 생성하는 문제는 하드웨어의 발전에 따라 꾸준히 주목받고 있다. 그러나 컴퓨터를 통해 생성한 이미지를 사람의 눈으로 바라봤을 때 자연스럽지 않다는 문제 또한 계속해서 대두되고 있다. 최근 딥러닝 분야에 대한 연구가 활발히 진행됨에 따라 이를 활용한 영상 생성 및 개선 문제 또한 활발히 연구되고 있으며 그 중에서도 적대적 생성 신경망(Generative Adversarial Network)이라는 네트워크가 영상 생성 분야에 있어 좋은 결과를 보이고 있다. 적대적 생성 신경망이 제안된 이후 이를 기반으로 하는 다양한 네트워크가 제시됨에 따라 영상 생성 분야에서 더 자연스러운 영상을 생성하는 것이 가능해졌다. 그 중 pix2pix은 조건 적대적 생성 신경망 모델로 다양한 데이터셋에서도 좋은 성능을 보이는 범용적인 네트워크이다. pix2pix는 U-Net을 기반으로 두고 있으나 U-Net을 기반으로 하는 네트워크 중에서는 더 좋은 성능을 보이는 네트워크가 다수 존재한다. 때문에 본 연구에서는 pix2pix의 U-Net에 다양한 네트워크를 적용해 영상을 생성하고 그 결과를 상호 비교 평가한다. 각 네트워크를 통해 생성된 영상을 통해 기존의 U-Net을 사용한 pix2pix 모델보다 어텐션, R2, 어텐션-R2 네트워크를 적용한 pix2pix 모델이 더 좋은 성능을 보이는 것을 확인하고 그 중 가장 성능이 뛰어난 네트워크의 한계점을 향후 연구로 제시한다.

NARX 신경망 최적화를 통한 주가 예측 및 영향 요인에 관한 연구 (A Study on the stock price prediction and influence factors through NARX neural network optimization)

  • 전민종;이욱
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.572-578
    • /
    • 2020
  • 주식 시장은 기업 실적 및 경기 상황뿐만 아니라 정치, 사회, 자연재해 등 예기치 못한 요소들에 영향을 받는다. 이런 요소들을 고려한 정확한 예측을 위해서 다양한 기법들이 사용된다. 최근 인공지능 기술이 화두가 되면서 이를 활용한 주가 예측 시도 또한 이루어지고 있다. 본 논문은 단순히 주식 관련 데이터뿐만 아닌, 거시 경제적 지표 등을 활용한 여러 종류의 데이터를 이용하여 주가에 영향을 미치는 요소에 관한 연구를 제안한다. KOSDAQ을 대상으로 1년 치 종가, 외국인 비율, 금리, 환율 데이터를 다양하게 조합한 후에 딥러닝의 Nonlinear AutoRegressive with eXternal input (NARX) 모델을 활용한다. 이 모델을 통해 1달 치 데이터를 생성하고 각 데이터 조합을 통해 만들어진 예측값을 RMSE를 통해 실제값과 비교, 분석한다. 또한, 은닉층에서 뉴런의 수, 지연 시간을 다양하게 설정하여 RMSE를 비교한다. 분석 결과 뉴런은 10개, 지연 시간은 2로 설정하고, 데이터는 미국, 중국, 유럽, 일본 환율의 조합을 사용할 때 RMSE 0.08을 보이며 가장 낮은 오차를 기록하였다. 본 연구는 환율이 주식에 가장 영향을 많이 미친다는 점과 종가 데이터만 사용했을 때의 RMSE 값인 0.589에서 오차를 낮췄다는 점에 의의가 있다.

냉난방 시간을 예측하는 인공신경망의 구축 및 IoT 시스템에서의 활용 (Air-conditioning and Heating Time Prediction Based on Artificial Neural Network and Its Application in IoT System)

  • 김준수;이주익;김동호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.347-350
    • /
    • 2018
  • 사용자가 집에 도착하기 전에 IoT 시스템이 집안 온도를 자동으로 쾌적하게 하기 위해서는 사용자의 도착 예정 시간에 맞게 설정한 온도에 도달할 수 있는 최적의 에어컨 및 난방의 가동 시작 시간을 예측해야 한다. 가동 시간을 정확하게 예측한다면 불필요한 가동시간을 줄일 수 있기 때문에 요금 낭비를 피할 수 있는 효과가 있다. 본 논문은 에어컨과 보일러를 사용하는 집의 냉난방 시간을 예측하는 인공신경망과 이를 활용하는 IoT 시스템을 소개한다. 에어컨과 보일러가 특정 시작 온도에서 특정 목표 온도로 집안을 냉난방 하는데 걸리는 시간에 영향을 주는 변수는 집안의 구조, 집안의 크기, 외부 날씨 환경 등으로 매우 다양하다. 그중에서 측정 가능한 변수인 집안 온도, 집안 습도, 외부 온도, 외부 습도, 풍향, 풍도, 풍속 냉각 효과를 활용하여 학습데이터를 만들고 최적의 인공신경망을 구축하였다. 인공신경망을 구축한 후에는 이를 활용하는 IoT 시스템을 개발하였다. IoT 시스템은 라즈베리파이3 기반의 메인 시스템과 안드로이드 기반의 모바일 애플리케이션으로 구성하였다. 인공신경망을 활용하기 위해 모바일 애플리케이션의 GPS 센서를 활용하여 사용자의 이동 분석하고 귀가 시간을 예측하는 기능을 구현하였다.

  • PDF

온실의 환경요인을 이용한 인공신경망 기반 수경 재배 파프리카의 증산량 추정 (Transpiration Prediction of Sweet Peppers Hydroponically-grown in Soilless Culture via Artificial Neural Network Using Environmental Factors in Greenhouse)

  • 남두성;이준우;문태원;손정익
    • 생물환경조절학회지
    • /
    • 제26권4호
    • /
    • pp.411-417
    • /
    • 2017
  • 광도, 포차와 같은 환경요인과 엽면적 지수와 같은 생육요인은 증산 속도를 변화시키는 중요한 변수이다. 본 연구에서는 Penman-Monteith의 증산 모델과 인공신경망(ANN)에 학습에 의한 증산속도 추정값을 비교하는 것을 목표로 하였다. 파프리카(Capsicum annuum L. cv. Fiesta)의 증산속도 추정은 로드셀을 이용한 배지의 중량변화를 통해 계산하였다. 온도, 상대습도, 배지 중량 데이터는 1분 단위로 2개월간 수집하였다. 증산량은 일차식으로는 정확한 추정이 어렵기 때문에, 기존의 Penman-Monteith식에 보정 광도를 사용한 수정식 Shin 등(2014)을 사용하였다. 이와는 별개로 ANN을 사용하여 증산량을 추정 비교하였다. 이를 위하여 광도, 온도, 습도, 엽면적지수, 시간을 사용한 입력층과 5개의 은닉층으로 구성된 ANN을 구축하였다. 각 은닉층의 퍼셉트론 개수는 가장 정확성이 높은 512개로 하였다. 검증 결과, 보정된 Penman-Monteith 모델식의 $R^2=0.82$이었고, ANN의 $R^2=0.94$로 나타났다. 따라서 ANN은 일반적인 모델식에 비해 정확한 증산량 추정이 가능한 것으로 나타났고, 추후 수경재배의 효율적인 관수전략 수립에 있어 적용 가능할 것으로 판단되었다.

간호대학생의 카데바 모델을 이용한 인체해부 관찰경험 (The experiences of human body anatomy observations using the Cadaver Model in the nursing students)

  • 강현임;이영란
    • 디지털융복합연구
    • /
    • 제15권4호
    • /
    • pp.233-242
    • /
    • 2017
  • 간호대학생의 카데바 모델을 이용한 인체 해부 관찰 경험을 확인하여 카데바 실습 프로그램 개발 및 해부학 교육과정 등의 기초자료를 제공하기 위함이다. 19명을 대상으로 2팀의 포커스그룹 인터뷰(Morgan, 1997)로 수집된 자료를, Colaizzi 분석방법을 선택하여 간호대학생의 카데바 모델을 이용한 인체 해부 관찰 경험의 의미와 그 본질을 파악하고자 하였다. 간호대 학생의 카데바 모델을 이용한 인체 해부 관찰 경험에 대한 분석 결과는 6개 범주와 13개의 주제묶음(theme clusters)으로 도출되었다. 본질적 구조로는 '카데바 실습에 대한 양가감정', '실제에 맞닥뜨림', '값진 것을 배움', '인간을 대하는 마음이 깊어짐', '간호인이 되어 감을 느낌', '온전히 내어줌에 대한 숙고.'등 6개의 범주로 도출되었다. 간호대학생은 카데바 실습을 통해 해부학에 대한 이해뿐만 아니라 인간의 이해, 생명 및 존중, 죽음, 직업윤리 등을 경험하고 또 고민하면서 간호인이 되어가는 것을 확인하였다. 본 연구의 결과는 향후 해부학교육에 대한 기초자료 뿐 만 아니라 해부학교육의 효과를 극대화하기 위한 교육방법에 도움이 되고, 인간의 이해 및 생명윤리, 간호윤리 등을 확립 할 수 있는 교육프로그램을 위해 기초자료로 활용될 것이다.

NVIDIA Jetson TX1 기반의 사람 표정 판별을 위한 YOLO 모델 FPS 향상 방법 (YOLO Model FPS Enhancement Method for Determining Human Facial Expression based on NVIDIA Jetson TX1)

  • 배승주;최현준;정구민
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.467-474
    • /
    • 2019
  • 본 이 논문에서는 NVIDIA Jetson TX1에서 YOLO v2 모델의 정확도를 유지하면서 FPS를 개선하는 방법을 제안한다. 일반적으로, 딥러닝 모델에서는 연산량을 줄여 처리 속도를 높이기 위해 파라미터들을 실수형에서 정수형으로 변환하여 정수 연산을 통해 속도를 높이거나 네트워크의 깊이를 감소시키는 방법을 사용한다. 그러나 이 방법들은 인식 정확도가 떨어질 수 있다. 이 논문에서는 YOLO v2 모델을 이용해 표정인식기를 개발하고 정확도 유지 시키기 위해 정수 연산이나 네트워크 깊이 감소를 사용하는 대신, 다음 세 가지 방법을 통해 연산량 및 메모리 소모를 줄인다. 첫 번째, $3{\times}3$ 필터를 $1{\times}1$ 필터로 교체하여 각 Layer 당 매개 변수 수를 9 분의 1로 줄인다. 두 번째, TensorRT의 추론 가속 기능 중 CBR (Convolution-Add Bias-Relu)을 통해 연산량을 줄이고, 마지막으로 TensorRT를 사용하여 반복되는 동일한 연산구조를 가진 레이어를 통합하여 메모리 소비를 줄인다. 시뮬레이션 결과, 기존 YOLO v2 모델에 비해 정확도는 1 % 감소했지만 FPS는 기존 3.9 FPS에서 11 FPS로 282%의 속도 향상을 보였다.

CAE 알고리즘을 이용한 레이더 강우 보정 평가 (Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation)

  • 정성호;오성렬;이대업;레수안히엔;이기하
    • 한국수자원학회논문집
    • /
    • 제54권7호
    • /
    • pp.453-462
    • /
    • 2021
  • 최근 몇 년 동안 국지성 집중호우의 빈도가 증가함에 따라 고해상도 레이더 자료의 중요성 및 활용성이 증가하고 있다. 하지만 여전히 레이더 자료의 경우 시·공간적 편의가 존재하고 이를 보정하는 것이 매우 중요하며 많은 연구에서 레이더 강우의 편의 보정을 위해 다양한 통계적 기법이 시도되었다. 본 연구에서는 시·공간적으로 강우를 추정할 수 있는 이중편파레이더의 편의를 지점 강우와 비교하여 보정하는 것을 목표로 한다. 환경부의 수자원관리 및 홍수 예측에 사용되는 S-밴드 이중편파레이더의 편의 보정을 위하여 합성곱신경망(Convolutional Neural Network, CNN)기반의 Convolutional Autoencoder (CAE) 알고리즘을 구축하여 편의 보정을 수행하였다. CAE 모델의 입력자료는 환경부의 10분 단위 레이더 합성 강우자료와 같은 공간해상도로 보간된 지점 관측 강우자료를 사용하였으며, 자료의 기간은 미호천 유역에 홍수 경보가 발령된 2017년 7월 16일 00시부터 13시까지의 10분 단위 자료를 사용하였다. 그 결과로 지점 강우 대비 원시 레이더 강우의 편의가 줄어듦을 확인할 수 있으며 시·공간적으로 개선된 결과를 보여주고 있다. 따라서 각 인접한 격자 간의 공간 관계를 학습하는 CAE 모델은 레이더 및 위성에서 추정되는 격자형 기후 자료의 실시간 편의 보정에 사용할 수 있을 것으로 분석되었다.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.33-42
    • /
    • 2022
  • 본 논문에서는 운전자한테 실시간으로 블랙 아이스 경고를 보내기 위해서 도로 영상에서 블랙 아이스 영역 분할을 위한 다중 척도 팽창 컨볼루션 특징 융합에 기반한 딥러닝 모델을 제안한다. 제안한 다중척도 팽창 컨볼루션 특징 융합 네트워크는 인코더 블록에 서로 다른 팽창 비율 컨볼루션을 병렬로 추가하고, 서로 다른 해상도 특징 맵에서 서로 다른 팽창 비율을 설정하고, 다중 단계 특징 정보가 함께 융합된다. 다중 척도 팽창 컨볼루션 특징 융합은 수용 영역을 확장함과 동시에 공간의 세부 정보를 잘 보존하고 팽창 컨볼루션의 효과성을 높임으로써 기존 모델보다 성능을 향상시킨다. 실험 결과를 통해 본 논문 제안한 네트워크 모델은 병렬 평창 컨볼루션 수가 증가함에 따라 성능이 향상되는 것을 알 수 있었다. 제안한 방법의 mIoU 값은 96.46%로 U-Net, FCN, PSPNet, ENet, LinkNet 등 기존 네트워크보다 높았다. 그리고 파라미터는 1,858K개로, 기존 LinkNet모델보다 6배로 축소하였다. Jetson Nano에서 실험 결과 보면, 제안한 방법의 FPS는 3.63로 실시간으로 블랙 아이스 영역을 실시간으로 분할 할 수 있었다.