• Title/Summary/Keyword: Deep Fusion Model

Search Result 85, Processing Time 0.022 seconds

Implementation of YOLOv5-based Forest Fire Smoke Monitoring Model with Increased Recognition of Unstructured Objects by Increasing Self-learning data

  • Gun-wo, Do;Minyoung, Kim;Si-woong, Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.536-546
    • /
    • 2022
  • A society will lose a lot of something in this field when the forest fire broke out. If a forest fire can be detected in advance, damage caused by the spread of forest fires can be prevented early. So, we studied how to detect forest fires using CCTV currently installed. In this paper, we present a deep learning-based model through efficient image data construction for monitoring forest fire smoke, which is unstructured data, based on the deep learning model YOLOv5. Through this study, we conducted a study to accurately detect forest fire smoke, one of the amorphous objects of various forms, in YOLOv5. In this paper, we introduce a method of self-learning by producing insufficient data on its own to increase accuracy for unstructured object recognition. The method presented in this paper constructs a dataset with a fixed labelling position for images containing objects that can be extracted from the original image, through the original image and a model that learned from it. In addition, by training the deep learning model, the performance(mAP) was improved, and the errors occurred by detecting objects other than the learning object were reduced, compared to the model in which only the original image was learned.

Efficient Recognition of Easily-confused Chinese Herbal Slices Images Using Enhanced ResNeSt

  • Qi Zhang;Jinfeng Ou;Huaying Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2103-2118
    • /
    • 2024
  • Chinese herbal slices (CHS) automated recognition based on computer vision plays a critical role in the practical application of intelligent Chinese medicine. Due to the complexity and similarity of herbal images, identifying Chinese herbal slices is still a challenging task. Especially, easily-confused CHS have higher inter-class and intra-class complexity and similarity issues, the existing deep learning models are less adaptable to identify them efficiently. To comprehensively address these problems, a novel tiny easily-confused CHS dataset has been built firstly, which includes six pairs of twelve categories with about 2395 samples. Furthermore, we propose a ResNeSt-CHS model that combines multilevel perception fusion (MPF) and perceptive sparse fusion (PSF) blocks for efficiently recognizing easilyconfused CHS images. To verify the superiority of the ResNeSt-CHS and the effectiveness of our dataset, experiments have been employed, validating that the ResNeSt-CHS is optimal for easily-confused CHS recognition, with 2.1% improvement of the original ResNeSt model. Additionally, the results indicate that ResNeSt-CHS is applied on a relatively small-scale dataset yet high accuracy. This model has obtained state-of-the-art easily-confused CHS classification performance, with accuracy of 90.8%, far beyond other models (EfficientNet, Transformer, and ResNeSt, etc) in terms of evaluation criteria.

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

Improved Classification of Cancerous Histopathology Images using Color Channel Separation and Deep Learning

  • Gupta, Rachit Kumar;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • Oral cancer is ranked second most diagnosed cancer among Indian population and ranked sixth all around the world. Oral cancer is one of the deadliest cancers with high mortality rate and very less 5-year survival rates even after treatment. It becomes necessary to detect oral malignancies as early as possible so that timely treatment may be given to patient and increase the survival chances. In recent years deep learning based frameworks have been proposed by many researchers that can detect malignancies from medical images. In this paper we have proposed a deep learning-based framework which detects oral cancer from histopathology images very efficiently. We have designed our model to split the color channels and extract deep features from these individual channels rather than single combined channel with the help of Efficient NET B3. These features from different channels are fused by using feature fusion module designed as a layer and placed before dense layers of Efficient NET. The experiments were performed on our own dataset collected from hospitals. We also performed experiments of BreakHis, and ICML datasets to evaluate our model. The results produced by our model are very good as compared to previously reported results.

Deep Reference-based Dynamic Scene Deblurring

  • Cunzhe Liu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.653-669
    • /
    • 2024
  • Dynamic scene deblurring is a complex computer vision problem owing to its difficulty to model mathematically. In this paper, we present a novel approach for image deblurring with the help of the sharp reference image, which utilizes the reference image for high-quality and high-frequency detail results. To better utilize the clear reference image, we develop an encoder-decoder network and two novel modules are designed to guide the network for better image restoration. The proposed Reference Extraction and Aggregation Module can effectively establish the correspondence between blurry image and reference image and explore the most relevant features for better blur removal and the proposed Spatial Feature Fusion Module enables the encoder to perceive blur information at different spatial scales. In the final, the multi-scale feature maps from the encoder and cascaded Reference Extraction and Aggregation Modules are integrated into the decoder for a global fusion and representation. Extensive quantitative and qualitative experimental results from the different benchmarks show the effectiveness of our proposed method.

Facial Action Unit Detection with Multilayer Fused Multi-Task and Multi-Label Deep Learning Network

  • He, Jun;Li, Dongliang;Bo, Sun;Yu, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5546-5559
    • /
    • 2019
  • Facial action units (AUs) have recently drawn increased attention because they can be used to recognize facial expressions. A variety of methods have been designed for frontal-view AU detection, but few have been able to handle multi-view face images. In this paper we propose a method for multi-view facial AU detection using a fused multilayer, multi-task, and multi-label deep learning network. The network can complete two tasks: AU detection and facial view detection. AU detection is a multi-label problem and facial view detection is a single-label problem. A residual network and multilayer fusion are applied to obtain more representative features. Our method is effective and performs well. The F1 score on FERA 2017 is 13.1% higher than the baseline. The facial view recognition accuracy is 0.991. This shows that our multi-task, multi-label model could achieve good performance on the two tasks.

Assembling three one-camera images for three-camera intersection classification

  • Marcella Astrid;Seung-Ik Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.862-873
    • /
    • 2023
  • Determining whether an autonomous self-driving agent is in the middle of an intersection can be extremely difficult when relying on visual input taken from a single camera. In such a problem setting, a wider range of views is essential, which drives us to use three cameras positioned in the front, left, and right of an agent for better intersection recognition. However, collecting adequate training data with three cameras poses several practical difficulties; hence, we propose using data collected from one camera to train a three-camera model, which would enable us to more easily compile a variety of training data to endow our model with improved generalizability. In this work, we provide three separate fusion methods (feature, early, and late) of combining the information from three cameras. Extensive pedestrian-view intersection classification experiments show that our feature fusion model provides an area under the curve and F1-score of 82.00 and 46.48, respectively, which considerably outperforms contemporary three- and one-camera models.

Establishment of Priority Update Area for Land Coverage Classification Using Orthoimages and Serial Cadastral Maps

  • Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, Jin Sue
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.763-776
    • /
    • 2021
  • This paper introduces a method of selecting priority update areas for subdivided land cover maps by training orthoimages and serial cadastral maps in a deep learning model. For the experiment, orthoimages and serial cadastral maps were obtained from the National Spatial Data Infrastructure Portal. Based on the VGG-16 model, 51,470 images were trained on 33 subdivided classifications within the experimental area and an accuracy evaluation was conducted. The overall accuracy was 61.42%. In addition, using the differences in the classification prediction probability of the misclassified polygon and the cosine similarity that numerically expresses the similarity of the land category features with the original subdivided land cover class, the cases were classified and the areas in which the boundary setting was incorrect and in which the image itself was determined to have a problem were identified as the priority update polygons that should be checked by operators.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

New Text Sentiment Classification Method (새로운 텍스트 감정 분류 방법)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong;Kim, Hyung-Jin;Lee, Jae-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.553-554
    • /
    • 2021
  • This paper proposes a convergence model based on LSTM and CNN deep learning techniques, and obtains good results by applying it to multi-category news datasets. According to the experiment, the deep learning-based fusion model significantly improved the precision and accuracy of text sentiment classification.

  • PDF