International Journal of Computer Science & Network Security
/
제22권2호
/
pp.214-222
/
2022
Convolutional Neural networks (CNNs) are a category of deep learning networks that have proven very effective in computer vision tasks such as image classification. Notwithstanding, not much has been seen in its use for remote sensing image classification in developing countries. This is majorly due to the scarcity of training data. Recently, transfer learning technique has successfully been used to develop state-of-the art models for remote sensing (RS) image classification tasks using training and testing data from well-known RS data repositories. However, the ability of such model to classify RS test data from a different dataset has not been sufficiently investigated. In this paper, we propose a deep CNN model that can classify RS test data from a dataset different from the training dataset. To achieve our objective, we first, re-trained a ResNet-50 model using EuroSAT, a large-scale RS dataset to develop a base model then we integrated Augmentation and Ensemble learning to improve its generalization ability. We further experimented on the ability of this model to classify a novel dataset (Nig_Images). The final classification results shows that our model achieves a 96% and 80% accuracy on EuroSAT and Nig_Images test data respectively. Adequate knowledge and usage of this framework is expected to encourage research and the usage of deep CNNs for land cover mapping in cases of lack of training data as obtainable in developing countries.
Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
한국컴퓨터정보학회논문지
/
제28권11호
/
pp.1-11
/
2023
유방암은 전 세계적으로 여성들 대다수에게 가장 두려워하는 질환이다. 오늘날 데이터의 증가와 컴퓨팅 기술의 향상으로 머신러닝(machine learning)의 효율성이 증대되어 암 검출 및 진단 등에 중요한 역할을 하고 있다. 딥러닝(deep learning)은 인공신경망(artificial neural network, ANN)을 기반으로 하는 머신러닝 기술의 한 분야로 최근 여러 분야에서 성능이 급속도로 개선되어 활용 범위가 확대되고 있다. 본 연구에서는 유방암 분류를 위해 전이학습(transfer learning) 기반 DNN(Deep Neural Network)과 SVM(support vector machine)의 구조를 결합한 DNN-SVM Hybrid 모형을 제안한다. 전이학습 기반 제안된 모형은 적은 학습 데이터에도 효과적이고, 학습 속도도 빠르며, 단일모형, 즉 DNN과 SVM이 가지는 장점을 모두 활용 가능토록 결합함으로써 모형 성능이 개선되었다. 제안된 DNN-SVM Hybrid 모형의 성능평가를 위해 UCI 머신러닝 저장소에서 제공하는 WOBC와 WDBC 유방암 자료를 가지고 성능실험 결과, 제안된 모형은 여러 가지 성능 척도 면에서 단일모형인 로지스틱회귀 모형, DNN, SVM 그리고 앙상블 모형인 랜덤 포레스트보다 우수함을 보였다.
Han, Shujie;Fuentes, Alvaro;Yoon, Sook;Park, Jongbin;Park, Dong Sun
스마트미디어저널
/
제11권8호
/
pp.84-92
/
2022
Precision livestock monitoring promises greater management efficiency for farmers and higher welfare standards for animals. Recent studies on video-based animal activity recognition and tracking have shown promising solutions for understanding animal behavior. To achieve that, surveillance cameras are installed diagonally above the barn in a typical cattle farm setup to monitor animals constantly. Under these circumstances, tracking individuals requires addressing challenges such as occlusion and visual appearance, which are the main reasons for track breakage and increased misidentification of animals. This paper presents a framework for multi-cattle tracking in closed barns with appearance and motion models. To overcome the above challenges, we modify the DeepSORT algorithm to achieve higher tracking accuracy by three contributions. First, we reduce the weight of appearance information. Second, we use an Ensemble Kalman Filter to predict the random motion information of cattle. Third, we propose a supplementary matching algorithm that compares the absolute cattle position in the barn to reassign lost tracks. The main idea of the matching algorithm assumes that the number of cattle is fixed in the barn, so the edge of the barn is where new trajectories are most likely to emerge. Experimental results are performed on our dataset collected on two cattle farms. Our algorithm achieves 70.37%, 77.39%, and 81.74% performance on HOTA, AssA, and IDF1, representing an improvement of 1.53%, 4.17%, and 0.96%, respectively, compared to the original method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.729-748
/
2021
Vocal detection is one of the fundamental steps in musical information retrieval. Typically, the detection process consists of feature extraction and classification steps. Recently, neural networks are shown to outperform traditional classifiers. In this paper, we report our study on how to improve detection accuracy further by carefully choosing the parameters of the deep network model. Through experiments, we conclude that a feature-classifier model is still better than an end-to-end model. The recommended model uses a spectrogram as the input plane and the classifier is an 18-layer convolutional neural network (CNN). With this arrangement, when compared with existing literature, the proposed model improves the accuracy from 91.8% to 94.1% in Jamendo dataset. As the dataset has an accuracy of more than 90%, the improvement of 2.3% is difficult and valuable. If even higher accuracy is required, the ensemble learning may be used. The recommend setting is a majority vote with seven proposed models. Doing so, the accuracy increases by about 1.1% in Jamendo dataset.
손바닥은 손금, 정맥 등 고유한 특징 정보를 포함하고 있는 신체 부위로 이를 이용한 다양한 사용자 인식 방법이 지속적으로 연구되어 왔다. 본 논문에서는 손금과 손바닥 정맥을 함께 이용한 사용자 인식 방법을 제안한다. 먼저, 손바닥 영역에서 손금과 정맥이 가장 많이 포함되어 있는 관심 영역을 검출하고, 에지 방향성 및 밝기 통계정보를 이용하여 정맥 영상 화질 개선을 수행한다. 이후 다중 스펙트럼 환경에서 획득된 복수의 영상을 각각 독립된 심층 신경망의 입력으로 이용하여 손금과 정맥 패턴을 효과적으로 학습한다. 다양한 상황에서의 실험을 통해 본 논문에서 제안하는 방법이 기존 사용자 인식 방법 대비 개선된 결과를 보임을 확인하고 그 결과를 분석한다.
현재 지하시설물의 균열을 영상 취득 시스템으로 취득한 경우 점검자가 취득된 영상에서 육안검사를 수행하여 미세균열을 판단한다. 점검자에 의존한 노동집약적인 방법은 점검자의 주관적인 판단에 영향을 받는 문제점을 가지고 있다. 최근에는 딥러닝을 활용하여 자동으로 콘크리트 균열을 탐지하기 위한 연구가 활발하게 수행되고 있다. 대부분의 연구에서는 공개 데이터셋을 활용하거나 분석과정의 객관성이 충분하지 못해 실제 업무에 적용하기 어려운 점이 있다. 본 연구는 실제 검사 시스템과 동일한 형태의 영상을 시험 데이터셋으로 선정하여 딥러닝 모델들을 평가하였다. 균열 탐지의 정확도를 향상시키기 위하여 딥러닝 모델들의 장단점을 상호 보완할 수 있는 앙상블 기법을 적용하였다. 시험 영상에서 폭 0.2 mm, 0.3 mm 및 0.5 mm의 균열들은 각각 80%, 88% 및 89%의 높은 재현율로 탐지되었다. 딥러닝을 적용한 균열 탐지 결과에서는 점검자의 육안 검수 과정에 찾지 못한 다수의 균열들을 포함하고 있었다. 향후 본 연구에서 사용하지 않은 다른 터널의 영상을 시험 영상으로 선정하여 보다 더 객관적인 평가에서 충분한 정확도로 균열을 탐지하게 된다면, 시설물 안점 점검 방식에 딥러닝의 도입이 가능할 것으로 판단된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권6호
/
pp.2018-2043
/
2022
Nowadays, COVID-19 infections are influencing our daily lives which have spread globally. The major symptoms' of COVID-19 are dry cough, sore throat, and fever which in turn to critical complications like multi organs failure, acute respiratory distress syndrome, etc. Therefore, to hinder the spread of COVID-19, a Computerized Doughty Predictor Framework (CDPF) is developed to yield benefits in monitoring the progression of disease from Chest CT images which will reduce the mortality rates significantly. The proposed framework CDPF employs Convolutional Neural Network (CNN) as a feature extractor to extract the features from CT images. Subsequently, the extracted features are fed into the Adaptive Dragonfly Algorithm (ADA) to extract the most significant features which will smoothly drive the diagnosing of the COVID and Non-COVID cases with the support of Doughty Learners (DL). This paper uses the publicly available SARS-CoV-2 and Github COVID CT dataset which contains 2482 and 812 CT images with two class labels COVID+ and COVI-. The performance of CDPF is evaluated against existing state of art approaches, which shows the superiority of CDPF with the diagnosis accuracy of about 99.76%.
본 논문에서는 목조 문화재의 변위량을 감지할 수 있는 앙상블 딥러닝 모델 모델을 제안한다. 우선 총 2개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 2개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위의 심각 단계에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 앙상블 딥러닝 기법을 사용한 모델이 앙상블 기법을 사용하지 않는 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위량 예측에 있어서 매우 적합함을 보여준다.
웹 추천기법에서 가장 많이 사용하는 방식 중의 하나는 협업필터링 기법이다. 협업필터링 관련 많은 연구에서 정확도를 개선하기 위한 방안이 제시되어 왔다. 본 연구는 Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 방안에 대해 제안한다. 먼저 사용자, 영화, 평점 정보에서 사용자 문장과 영화 문장을 구성한다. 사용자 문장과 영화 문장을 Word2Vec에 입력으로 넣어 사용자 벡터와 영화 벡터를 구한다. 사용자 벡터는 사용자 합성곱 모델에 입력하고, 영화 벡터는 영화 합성곱 모델에 입력한다. 사용자 합성곱 모델과 영화 합성곱 모델은 완전연결 신경망 모델로 연결된다. 최종적으로 완전연결 신경망의 출력 계층은 사용자 영화 평점의 예측값을 출력한다. 실험결과 전통적인 협업필터링 기법과 유사 연구에서 제안한 Word2Vec과 심층 신경망을 사용한 기법에 비해 본 연구의 제안기법이 정확도를 개선함을 알 수 있었다.
International Journal of Naval Architecture and Ocean Engineering
/
제12권1호
/
pp.428-439
/
2020
The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.