• Title/Summary/Keyword: Deep Drawing Die

Search Result 149, Processing Time 0.02 seconds

Effect of Processing Conditions on the Deep Drawability of Ti-6Al-4V Sheet at Warm Temperatures (Ti-6Al-4V판재의 온간 딥드로잉 성형성에 미치는 공정변수의 영향)

  • Shin, G.S.;Park, J.G.;Kim, J.H.;Kim, Y.S.;Park, Y.H.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.5-12
    • /
    • 2015
  • In the current study, fundamental deep drawing characteristics of Ti-6Al-4V alloy sheets were investigated to establish the effect of processing conditions on large size square deep drawn cups. To accomplish this study, FE-simulations (Abaqus) were performed to determine optimum blank size, friction coefficient, the gap between punch and die, etc. The simulated processing parameters were verified experimentally. Based on the FE-simulation results, deep drawing was performed with various blank holding loads and sample sizes. In order to improve the formability of Ti-6Al-4V sheet, various lubricant methods were evaluated. Tensile tests and thickness measurements were conducted on the formed sheets. Processing parameters including blank holding force, lubricants, and optimum blank size, were selected to achieve improved drawing quality. With the optimum processing condition, a $200mm{\times}200mm$ cup was deep drawn successfully.

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각방법에 의한 마그네슘합금의 판재성형성 개선)

  • Kang Dae-Min;Manabe Ken-ich
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to confirm the improvement of formability of AZ31 magnesium alloy sheet by using local heating and cooling technique. For this, the experiments of warm deep drawing were done under the temperatures of $100^{\circ}C\~400^{\circ}C$, and the punch velocity of 10, 100mm/min. Also FE analysis under the temperatures of blankholder and die of $150^{\circ}C,\;225^{\circ}C\;and\;300^{\circ}C$ for tools(holder and die) was executed with considering heat teansfer. From the results, the formability of AZ31 magnesium alloy, espicially the temperatures of $225^{\circ}C\~250^{\circ}C$ for tools(holder and die)improved remarkably. And the experiments and simulations showed that necking under room temperature for tools occured under the part of punch shoulder while at $300^{\circ}C$ for tools, at the part of die shoulder.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

Rational Design Modification in a Multi-stage Rectangular Cup Drawing Process with the Large Aspect Ratio (세장비가 큰 직사각컵 다단계 성형공정의 합리적 금형설계 변경)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.105-108
    • /
    • 2000
  • Finite element analysis of a multi-stage deep drawing process is carried out for the die design of rectangular cup drawing with the large aspect ratio. Simulation is performed for thorough investigation of unfavorable mechanisms in the initial design. The analysis reveals that the difference of the drawing ratio and the irregular contact condition produces non-uniform metal flow to cause wrinkling and severe extension. In this paper, the modification guideline is proposed in the design of the process and the tool shape. The analysis result confirms that the modified design not only improves the quality of a deep-drawn product but also reduces the possibility of failure.

  • PDF

A Study on the Analysis and Improvement of Forming Process of a No-Bridge Blank (No-Bridge Blank의 공정 해석 및 성형 공정 개선에 관한 연구)

  • Lee Y. W.;Cho K. Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.85-88
    • /
    • 2001
  • Deep drawing process, one of sheet metal forming methods, is used widely. Circular or square shape blanks are currently studied mainly. Especially, circular blank for coating case of chip condenser remains bridges when it is made out of aluminum coil. The bridge reduces Material-withdrawal-rate of aluminum coil to $60\%$. This paper proposes a no-bridge blank instead of circular blank. To get the different values of two cases, comparison circular blank with no-bridge blank is accomplished in the point of thickness strain in the vicinity of flange. In order to find optimal condition in new proposed blank, several process variables - those are blank holder shape, die shape radii, punch shape radii and blank holding force - are changed.

  • PDF

Experimental Study on the Parameters Affecting Deep Drawing Process (딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구)

  • Jung, D.W.;Yang, H.I.;Lee, S.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.61-65
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which Is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

The Simulations on the Formability of AZ31 Magnesium Alloy Sheet in Warm Deep Drawing (AZ31 마그네슘합금판의 온간 디프드로잉 성형성해석)

  • Kang, Dae-Min;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn)sheet with a thickness of 1.0mm. Uniaxial tension tests at warm temperature were carried out to investigate the material characteristics of K, m, and n. A warm drawing process with a local heating and cooling technique was developed to improve formability in this study with results of uniaxial tension tests because it is very difficult for Mg alloy to deform at room temperature by the conventional method. The die and blank holder were heated up, while the punch was water-cooled during deformation. FE simulations considering heat transfer were executed with Mg alloy to investigate the Improvement of deep drawability. For the assessment of improvement those were compare with the results of no considering heat transfer and room temperature.

  • PDF

Experimental Study on the Parameters Affecting Deep Drawing Process (딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구)

  • 정동원;이승훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1593-1596
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

Reduction of Drawing Process in Warm Forming Steel Sheets using Oil Pan (온간성형공법을 이용한 오일팬 드로잉공정 단축)

  • 최이천
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.88-94
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with steel sheets of SCP3C and SCP1 for improving deep drawability. Experiments were carried out in various working conditions such as forming temperature and lubricantion. The effect of lubricantion and temperature on drawabillity of steel sheets as well as thickness distribution of drawn oil pan were examined and discussed. One step forming at room temperature and uniform distribution of thickness was achieved at optimum formability for lubricantion. The optimum forming temperature was obtained that both the die and the blankholder were heated to 10$0^{\circ}C$ while the punch was cooled by circulating coolant of $0^{\circ}C$.

  • PDF

A Study on Friction Coefficient for Sheet Metal Forming (판재 성형을 위한 마찰 계수에 관한 연구)

  • Park D. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.28-31
    • /
    • 2001
  • Friction for sheet metal forming affects improvement of deep drawing formability. The deep drawing is affected by many process variables, such as lubricant, blank shapes, shape radius and so on. Especially, lubrication is very important formability factor. In this study, in order to investigate fraction coefficient of sheet metal forming, we examined friction test about three conditions, such as non-lubrication, full lubrication and film lubrication. We measured friction coefficient according to pin load under the conditions like deep drawing die. Mean friction coefficient for film lubrication condition would be very useful value to improve drawability.

  • PDF