• Title/Summary/Keyword: Dedolomitization

Search Result 3, Processing Time 0.018 seconds

Secondary Mineral Formation and Expansion Mechanisms Involved in Concrete Pavement Deterioration (콘크리트 포장 도로의 성능저하에 관련된 이차광물형성과 팽창메카니즘)

  • ;Rober D. Cody
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.95-109
    • /
    • 2002
  • A significant question is what role does newly-formed expansive mineral growth play in the premature deterioration of concrete. These minerals formed in cement paste as a result of chemical reactions involving cement paste and coarse/fine aggregate. Petrographic observations and SEM/EDAX analysis were conducted in order to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken from lowa concrete highways that showed premature deterioration. Formation and expansive mechanisms involved in deterioration were Investigated. Brucite, Mg(OH)$_2$, is potentially expansive mineral that farms in cement paste of concretes containing reactive dolomite aggregate as a result of partial dedolomitization of the aggregate. No cracking was observed to be spatially associated with brucite, but most brucite was microscopic in size and widely disseminated in the cement paste of less durable concretes. Expansion stresses associated with its growth at innumerable microlocations may be retrieved by cracking at weaker locations in the concrete. Ettringite, 3CaO.Al$_2$O$_3$.3CaSO$_4$.32$H_2O$, completely fills many small voids and occurs as rims lining the margin of larger voids. Microscopic ettringite is common disseminated throughout the paste in many samples. Severe cracking of cement paste causing premature deterioration is often closely associated with ettringite locations, and strongly suggests that ettringite contributed to deterioration. Pyrite, FeS2, is commonly present in coarse/fine aggregates, and its oxidation products is observed in many concrete samples. Pyrite oxidation provides sulfate ions for ettringite formation.

Diagenetic history of the Mungok Formation near Machari area, Yongweol, Kangwondo, based on Textural, Isotopic, and Chemical Analyses (강원도 영월군 마차리 부근에 분포하는 오오도비스기 문곡층의 속성역사)

  • Woo Kyung Sik;Choi Seung Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.1-13
    • /
    • 1993
  • The diagenetic history of the carbonate rocks of the Mungok Formation near Machari area, Kangwondo, was investigated based on textural, isotopic, and chemical data. Paragenetic relationship among diagenetic minerals, coupled with their distinct geochemical contents, shows that the Mungok Formation have undergone several stages of diagenetic events: 1) shallow marine, 2) meteoric, 3) shallow to intermediate burial, and 4) deep burial diagenesis. Shallow marine diagenesis includes fibrous calcite cementation, micritization, and framboidal pyritization, and meteoric diagenesis involved dissolution and recrystallization of unstable allochems (both aragonite and HMC), syntaxial overgrowth on echinoderm fragments, and equant calcite cementation. During shallow to intermediate burial, idiotopic dolomite and chert formed, and xenotopic dolomitization took place before stylolitization of the rocks. After the rocks were deeply buried, saddle dolomitization, second stage of silicification, and dedolomitization occurred.

  • PDF

Ettringite/Thaumasite Formation, Stability and Their Effect on Deterioration of Concrete (에트린자이트/사우마사이트의 형성 및 안정도와 콘크리트 성능저하에 미치는 영향)

  • 이효민;황진연
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.75-90
    • /
    • 2003
  • Ettringite and thaumasite were observed in some concrete. The morphology and occurrence of these minerals were closely examined by performing SEM/EDAX analyses. We also experimentally induced the concrete deterioration using $Na_2SO_4$ solution with application of various environmental conditions. The stability of these minerals and deterioration characteristics under applied experimental conditions were determined. Abundant ettringite formed by“through solution reaction”occurred in many open spaces, and some microscopic ettringite formed by "tophochemical replacement" of calcium aluminate also occurred in cement paste. Severe cracking of cement paste causing premature deterioration was often associated with ettringite location. Under specific condition, ettringite was transformed to thaumasite, tricthloroaluminate, or decomposed. Thaumasite occurred with association of ettrinsite in concrete containing carbonate aggregate being subject to dedolomitization or in some concrete being subject to carbonation. Thaumasite appears to be formed under the similar condition to the general ettringite forming condition, but it formed solid solution with ettringite by substituting pre-existing ettringite. Ettringite can also be transformed to trichloroaluminate in the presence of abundant chlorides, but trichloroaluminate changed back to ettringite in late sulfate attack. It is considered that the substitution reaction direction solely depend on the concentration of chloride and sulfate ion.