• Title/Summary/Keyword: Dedicated Engine

Search Result 52, Processing Time 0.022 seconds

An experimental Study on Exhaust Emissions of CNG Dedicated Engine (CNG 전소기관의 배출가스에 관한 실험적 연구)

  • 오용석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • A CNG dedicated engine one of the types in natural gas engine is assessed as the most effective mechanism for the reduction of exhaust emissions. This work described the measuring results of a CNG dedicated engine by the experiment, In this study the characteristics of the CNG engine was investigated and then measured exhaust gas by engine performance mode at maximum load condition with increasing the engine speed in the range of 1,000-2,200rpm. The exhaust emission was also measured at D-13 mode as well as AVL-8 mode.

  • PDF

Development of Conversion Technology of a Decrepit Diesel Vehicle to the Dedicated Natural Gas Vehicle (노후 디젤차량으로부터 전소 천연가스자동차로의 개조 기술 개발)

  • Ryu, Kyung-Hyun;Kim, Bong-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.73-81
    • /
    • 2006
  • A commercial diesel engine was converted into a dedicated natural gas engine to reduce the exhaust emissions in a retrofit of a diesel-fueled vehicle. The cylinder head and piston were remodeled into engine parts suited for a spark ignition engine using natural gas. The remodeling of the combustion chamber changed the compression ratio from 21.5 to 10.5. A multi-point port injection(MPI) system for a dedicated natural gas engine was also adopted to increase the engine power and torque through improved volumetric efficiency, to allow a rapid engine response to changes in throttle position, and to control the precise equivalence ratio during cold-start and engine warm-up. The performance and exhaust emissions of the retrofitted natural gas engine after remodeling a diesel engine are investigated. The emissions of the retrofitted natural gas engine were low enough to satisfy the limits for a transitional low emission vehicle(TLEV) in Korea. We concluded that a diesel engine can be effectively converted into a dedicated natural gas engine without any deterioration in engine performance or exhaust emissions.

A Study on Natural Gas Vehicle Conversion by Diesel Engine Improvement (디젤엔진개량에 의한 천연가스차량전환에 관한 연구)

  • Han, Yeong Chul;O, Yong Seok;Na, Wan Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.94-94
    • /
    • 1999
  • Natural gas is considered to be on e of the most promising candidates for a clean substitute fuel and a great amount of research on the compressed natural gas(CNG) fueled vehicle has been performed. In this s tudy, we try to understand the property of CNG fuel with using CNG engine experiment. In order to present the direction and application of CNG, we experiment with various operating conditions that is, spark timing, A/F ratio, air quantity and fuel quantity, etc. 11,967 cc engine was used in the experiment and the engine fuel ratio was determined in the way that the performance of dedicated CNG engine is corresponded to that of existing diesel engine. The performance and dedicated CNG engine were measured by changing the fuel injection timing. The dedicated CNG engine was proved to be good in describing the experimental results and according to the actual road test, acceleration and constant speed driving for dedicated CNG engine was better than existing diesel engine.

A Study on Performance and Characteristic of Exhaust emission in CNG Dedicated Engine (천연가스 전소기관의 성능 및 배출가스 특성에 관한 연구)

  • 한영출;김경배;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.12-17
    • /
    • 2000
  • In this study a heavy duty diesel engine was modified into a 11-liter 6-cylinder SPI CNG dedicated engine, which was tested to investigate the performance and exhaust emission under the maximum load condition as the engine speed was increased in the range of 1,000∼2,200 rpm. The exhaust emission was also measured at D-13 mode as well as AVL-8 mode.

  • PDF

A Study on Performance and Exhaust Emission in CNG Engine by Ignition Timing and Equivalent Ration Change (점화시기 및 당량비 변화에 따른 CNG 기관의 성능 및 배출가스에 관한 연구)

  • 한영출;오용석;박봉규;김대열;김미수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.65-69
    • /
    • 2001
  • Research on the development of CNG dedicated engine that has important meaning both as a clean fuel and an alterna- tive energy to reduce the exhaust emission from diesel engine are actively going on these days. In this study, in order to present the direction and application of CNG engine, we tested the CNG engine performance experimented by changing the parameters such as ignition timing, equivalent ratio. The engine performance experimented by changing the parameters such as ignition timing, equivalent ratio. The engine performance and exhaust emission were measured by engine performance model at maximum load condition with increasing the rpm in the range of 1,000∼2,200rpm. Also, the testing engine was heavy-duty CNG dedicated engine with displacement of 11,050cc.

  • PDF

An Experimental Study on Engine Performance Characteristic of LPG Engine -Engine Perfermance Character at Various Compression Rations- (LP가스 차량용 기관의 성능특성에 관한 실험 연구 -압축비 변경에 따른 기관성능특성-)

  • 조기현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.654-661
    • /
    • 1999
  • This is fundamental study to improve performance of the SI engine,. In this study a conven-tional kerosene engine was modified to LPG dedicated engine which can be operated with LPG(Liquefied Petroleum Gas) The modified model were tested in accordance with various compression ratios. Also the engine performance with modified model was compared with the conventional one. The results are sum-marized as follow; 1. In comparison with the conventional kerosene Gasoline engine and LPG dedicated engine can be operated with lower exhaust emission better fuel economy and better thermal efficiency. 2. But is produce a slightly lower brake horse power.

  • PDF

An Experimental Study on Performance & Exhaust Emission by Boost pressure Change in Compressed Natural Gas Engine (압축천연가스기관에서 부스트압력 변화에 따른 성능 및 배출가스에 관한 실험적 연구)

  • 오용석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 2000
  • Recently air pollution is increased according to increase of vehicle. So many countries are studying about compressed natural gas engine. Research on the development of CNG dedicated engine that has important meaning both as a clean fuel and an alterna-tive energy to reduce the exhaust emission from diesel engine are actively going on these days. In this study the character-istics of CNG engine was investigated and the engine performance experimented by changing the parameters such as boost pressure. The CNG engine performance and exhaust emission were measured by engine performance mode at maximum load condition with increasing the rpm in the range of 1,000-2,200rpm. The exhaust emission was also measured at D-13 mode and compared to the emission regulation.

  • PDF

Status of Development of Biogas Engine in Korea (국내의 바이오가스엔진 기술개발 현황)

  • Lee, Jang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.472-475
    • /
    • 2005
  • Genenrally, biogas contained methane contents of $40-75\%$, was made in anaerobic compost facilities, landfill site, etc. And it is very useful for gas engine as a fuel. So, many imported biogas engines for electrical generation, are installed and operating now at landfill sites and anaerobic compost facilites. And KIMM has studied on and developed biogas engines with the aids of engine maker and parts companies for several years. Some results are shown here.

  • PDF

Improvement in Productivity of Engine Clutch Female Flanges for Tank (전차용 엔진클러치 암플랜지 생산성 향상을 위한 연구)

  • Kim, Joong-Seon;Kwon, Dae-Kyu;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.56-62
    • /
    • 2022
  • The tank engine clutch flange constitutes a tank on which the engine and transmission of the tank are mounted. The engine clutch flange is fabricated using a difficult-to-cut material that exhibits high strength and hardness. It is difficult to process and requires considerable processing expertise. In addition, the engine clutch flange for the tank requires high machining precision because it is a system in which the connection is detachable. Because it requires high processing precision, the measurement of products equally important as processing. However, productivity is low owing to the significant amount of time required to measure each product using a three-dimensional coordinate measuring machine. Hence, this study is conducted to improve the productivity of the female tank engine clutch flange. Dedicated hobs and jigs are designed and manufactured to convert the existing end-mill cutting processing into hobbing cutting processing. An engine clutch for the tanks is manufactured using the manufactured dedicated hob and jig, and the shortening time is verified by measuring the processing time. In addition, a jig for inspection is designed and manufactured to measure the precision of the product. To verify the inspected product, the product precision is measured using a contact-type three-dimensional coordinate measuring machine and a surface roughness measuring instrument. The study confirmed that the productivity of the engine clutch flange product for tanks can be improved by simplifying the process, reducing the processing time, and simplifying product inspection.