• Title/Summary/Keyword: Decontamination waste

Search Result 236, Processing Time 0.031 seconds

WASTE MANAGEMENT IN DECOMMISSIONING PROJECTS AT KAERI

  • Hong Sang-Bum;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.290-299
    • /
    • 2005
  • Two decommissioning projects are carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with a relation of the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of waste. All the liquid waste generated from KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed at an industrial disposal site, and the releasable waste is stored for the future disposal at the KAERI. The radioactive waste is packed in containers, and will be stored at the decommissioning sites till they are sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by the repeated decontamination. By the achievement of the minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for manpower, for direct materials and for administration was increased.

  • PDF

Evaluation of system design modifications for full system decontamination of Kori Unit 1

  • Kim, HakSoo;Kim, JeongJu;Kim, ChoRong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3949-3956
    • /
    • 2022
  • Kori Unit 1 is planning a system decontamination project to reduce radiation exposure of decommissioning workers, prevent the spread of contamination and down-grade the level of classification of radioactive waste. The system decontamination range for Kori Unit 1 will be the entire primary system, including RCS, CVCS and RHRS. Some system design modifications are required for the system decontamination operation. In this paper, major system design modifications were evaluated based on the conditions that system restoration is needed after completion of system decontamination. The major system design modifications are CIDF connection location to system, system decontamination operating pressure control, RCP seal water injection and formation of letdown flow. It was evaluated that there was no negative effect on the system due to the system design modifications. However, as the RCP seal water is injected into the system in the oxidation process, the concentration of the oxidizing agent is diluted. Therefore, the oxidizing agent injection and system decontamination operation procedures should be developed to address the dilution effect of the oxidizing agent. The system design modifications dealt in this paper will be finally confirmed through on-site investigation in the future, and if necessary, the system design modifications will be re-evaluated.

Decontamination of Uranium-Contaminated Gravel (우라늄으로 오염된 자갈의 제염)

  • Park, Uk Ryang;Kim, Gye Nam;Kim, Seung Soo;Moon, Jei Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A large amount of radioactively-contaminated gravel can be produced on the demolition/restoration of facilities related the back end of fuel cycle. However, because of the lacking in basic knowledge for decontamination of radioactive-contami-nated gravel, this study has performed the basic tests using for soil-washing. To find effective decontamination condition, several experiments were carried out for the selection of optimal decontamination agents. Washing by 0.1 M nitric acid was proved to be more effective than that by distilled water or surfactant for decontamination of uranium-contaminated gravel. In addition, crushing/grinding of uranium-contaminated gravel prior to washing was contributed to increase in of removal efficiency of uranium and reduction of decontamination time. The smaller the sizes of crushed gravel was, the more the removal efficiency increased. Also, small the sized particles improved chances for meeting the clearance requirement of the treated gravel.