Decontamination Technology of Spent Resin From PHWR

Young-Soo Jo^{*} and Jin-Hyun Sung

HuvisWater Co., 16, Gongdan 1-daero 322beon-gil, Siheung-si, Gyeonggi-do, Republic of Korea

*jys@huviswater.com

1. Introduction

Spent resin from Pressure Heavy Water Reactor(PHWR) are stored in concrete storage tanks near the reactor. Spent resin storage tanks have been reaching saturation point due to the prolonged operation time of nuclear power reactors.

Therefore, it is necessary to develop a proper method to handle and transfer the spent resin. However, because the spent resin contains a large amount of β -nuclides(¹⁴C, ³H) and γ - nuclides(⁶⁰Co, ¹³⁷Cs), the spent resin is currently under long-term storage.

Particularly with ¹⁴C, which is mainly generated from ¹⁷O(n, α)¹⁴C reaction in reactor system [1], it requires proper decontamination method because it emits high radiation due to its large amount that is bond to the anion resin in H¹⁴CO₃⁻ and ¹⁴CO₃²⁻ form.

This paper focuses on introducing the ¹⁴C desorption, as well as removal, technique within the spent resin storage.

2. Experiment method

2.1¹⁴C adsorption experiment

Before proceeding with the desorption and precipitation experiment, in order to evaluate the adsorbability of ¹⁴C and produce model sample of the spent resin from PHWR, ¹⁴C standard solution was added to the anion resin to measure the amount of ¹⁴C within the anion resin.

2.2¹⁴C desorption and precipitation experiment

Then, in order to desorb ¹⁴C that has been bonded to the anion resin, sulfuric acid solution was used because ¹⁴C gets released in gaseous form of CO_2 at low pH [1]. The core technique in decontaminating ¹⁴C is desorbed in ¹⁴CO₂ form from the anion resin, collecting the generated precipitate to remove ¹⁴C. Such method can be verified through two stages. First stage is about generating precipitate within $Ca(OH)_2$ aqueous solution by desorbing the ¹⁴C bond to the anion resin at low pH condition, and the second stage is about assuring if the precipitation of ¹⁴C from the first stage had been done properly by collecting ¹⁴C from the generated precipitate. The experimental equipment was installed as below for the first stage experiment.

Fig. 1. ¹⁴C desorption and precipitation equipment.

The CO₂ gas, which was generated after injecting sulfuric acid into the previously produced ¹⁴C adsorption sample resin, was collected by using NaOH solution. Also, N₂ gas and vacuum pump were subsidiarily used to smooth out the flow of and minimize the external release of the generated CO₂. ¹⁴C was re-collected by using the below equipment after collecting and natural drying CaCO₃ that was generated at the first stage.

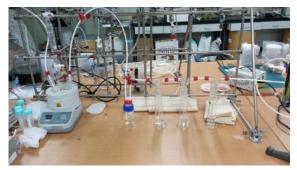


Fig. 2. Precipitate oxidation and collection equipment.

The CO₂ gas was generated by reacting CaCO₃ with HC1, and the generated ¹⁴CO₂ was collected with NaOH solution. The effectiveness of precipitation was verified by measuring the amount of ¹⁴C within the generated CaCO₃ from the first experiment. Like the first experiment, in order to smooth out the flow of the generated CO₂, N₂ gas and vacuum pump were subsidiarily used.

3. Results and discussion

Table 1. Anion resin before and after the experiment; ¹⁴C activity of CaCO₃

unity of eaces			
1 st Performance	¹⁴ C	activity(Bq)	Recovery factor
Anion Resin Before Desorption	39	Amount of Desorbed	
Anion Resin After Desorption	1.7	¹⁴ C: 37.3	72%
Precipitated		27	-
CaCO ₃ Powder		•	
nd -	¹⁴ C activity(Bq)		
2 nd Performance	^{14}C	activity(Bq)	Recovery factor
2 nd Performance Anion Resin Before		activity(Bq) Amount of	Recovery factor
	65	Amount of Desorbed	Recovery factor
Anion Resin Before	65	Amount of	
Anion Resin Before Desorption		Amount of Desorbed	Recovery factor 81%
Anion Resin Before Desorption Anion Resin After	65	Amount of Desorbed ¹⁴ C: 63.2	
Anion Resin Before Desorption Anion Resin After Desorption	65	Amount of Desorbed ¹⁴ C:	

As shown in the above table, the total amount of 14 C within the anion resin changed from 39 Bq, 65 Bq to 1.7 Bq, 1.8 Bq after the experiment, meaning that almost all 14 C was desorbed. Also, it was assured that 14 C amount within the generated precipitate is 27 Bq, 51.25 Bq, meaning that 72%, 81% of the desorbed 14 C was collected.

4. Conclusion

Through the desorption and precipitation experiment of ¹⁴C bond to the anion resin, it was affirmed that ¹⁴C can be collected by using $Ca(OH)_2$ aqueous solution, and it can be predicted that there will be considerably less amount of secondary waste than the ¹⁴C adsorption using the LiOH filter.

Thus, from now on, if the spent resin from PHWR is decontaminated by applying these techniques, it will be effective towards developing the technique to dispose of and transfer spent resin with minimum amount of secondary waste.

REFERENCES

 Ho-Yeon Yang, besides 7, "Ion Adsorption Charateristics of IRN-150 Mixed Resin and Removal Behavior of ¹⁴C", J. of the Korea Radioactive Waste Society, 4(4), 373-384 (2006).