• Title/Summary/Keyword: Decomposition velocity

Search Result 199, Processing Time 0.028 seconds

An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations (비압축성 Navier-Stokes 방정식에 대한 내재적 속도 분리 방법)

  • Kim KyounRyoun;Baek Seunr-Jin;Sung Hyunn Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • An efficient numerical method to solve the unsteady incompressible Navier-Stokes equations is developed. A fully implicit time advancement is employed to avoid the CFL(Courant-Friedrichs-Lewy) restriction, where the Crank-Nicholson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity-pressure decoupling is achieved in conjunction with the approximate factorization. Main emphasis is placed on the additional decoupling of the intermediate velocity components with only n th time step velocity The temporal second-order accuracy is Preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving the turbulent minimal channel flow unit.

  • PDF

The Black Hole Mass - Stellar Velocity Dispersion Relation of Narrow-Line Seyfert 1 Galaxies

  • Yoon, Yo-Sep;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2012
  • Given high accretion rates close to the Eddington limit, narrow-line Seyfert 1 galaxies (NLS1) are arguably the most important AGN subclass in investigating the origin of the black hole mass-galaxy stellar velocity dispersion ($M_{BH}-{\sigma}$) relation. Currently, it is highly debated whether NLS1s are offset from the local $M_{BH}-{\sigma}$ relation. The controversy mainly comes from the fact that the [OIII] line width has been used as a proxy for stellar velocity dispersion due to the difficulty of measuring stellar velocity dispersion in NLS1s. Using the SDSS spectra of a sample of 105 NLS1, we performed multi-component fitting analysis to separate stellar absorption lines from strong AGN [FeII] complex in order to directly measure stellar velocity dispersion. We will present the result of decomposition analysis and discuss whether NLS1s follow the same $M_{BH}-{\sigma}$ relation based on the direct measurements of stellar velocity dispersion.

  • PDF

Hydrogen production by catalytic decomposition of propane-containing methane over N330 carbon black in a fluidized bed (유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매분해에 의한 수소 제조)

  • Lee, Seung-Chul;Lee, Kang-In;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.761-764
    • /
    • 2009
  • The thermocatalytic decomposition of methane is an environmentally attractive approach to $CO_2$-free production of hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbon from the reactor. The usage of carbon black was reported as stable catalyst for decomposition of methane. Therfore, carbon black (DCC-N330) is used as catalyst. A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was selected for the thermo-catalytic decomposition. The porpane-containg methnae decomposition reaction was operated at the temperature range of 850-900 $^{\circ}C$ methane gas velocity of 1.0 $U_{mf}$ and the operating pressure of 1.0 atm. In this work, propane was added as reactant to make methane conversion higher. Therefore we compared with methane conversion and pre-experiment methane conversion that using only methane as reactant. The carbon black, after experiment, was measured in particle size and surface area and analyzed surface of the carbon black by TEM.

  • PDF

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition (가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조)

  • Seo, Hyung-Jae;Lee, Seung-Chul;Lee, Gang-In;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구)

  • Nam, Woo-Seok;Jung, Jae-Uk;Yoon, Ki-June;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.388-391
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2-free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor The propane decomposition rate used carbon black DCC-N330, Hi-900L as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600-800^{\circ}C$, propane gas velocity of $1.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature on the reaction rates was investigated. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

A Study on the Activation Energy and Characteristics of the Heat Decomposition of Flour (밀가루의 열분해 특성과 활성화 에너지에 관한 연구)

  • Kwon, Sung-Yul;Choi, Jae-Wook;Lee, Dong-Hoon;Choi, Jae-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.55-62
    • /
    • 2009
  • After examining the characteristics of the heat decomposition of the 80~120mesh flour using the Mini cup pressure vessel test and determining the apparent activation energy in a spontaneous combustion, the conclusion is as follows. The heat decomposition of flour occurs at around $100^{\circ}C$ and the peak for the maximum rise in pressure appears at around $290^{\circ}C$. The decomposition pressure against various temperature in the vessel shows the maximum value of $4.7kg/cm^2$ approximately at $440^{\circ}C$. When the thickness of the sample is 3cm, the maximum temperature and the critical temperature of ignition are $398^{\circ}C$ and $204.5^{\circ}C$, respectively; the critical temperature is $194.5^{\circ}C$ when the thickness of the sample is 5cm, and $182.5^{\circ}C$ when the sample is 7cm. In addition, the apparent velocity calculated using the method of least squares is 35.0407Kcal/mol.

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition for Propellant Applications (추진제 응용을 위한 아산화질소의 촉매 분해 특성 연구)

  • Kim, Tae-Gyu;Yong, Sung-Ju;Park, Dae-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • The study on the characteristics of nitrous oxide catalytic decomposition was carried out to utilize the nitrous oxide as a propellant. The Pt, Ir and Ru were synthesized to select a high performance catalyst for the nitrous oxide decomposition reaction. The respective catalyst precursors were loaded in the $Al_2O_3$ support using an wet impregnation method. The $N_2O$ conversion as a variation of space velocity and reaction temperature was measured using a tubular reactor. The catalyst loss was measured to evaluate the durability of catalysts after the reaction at $800^{\circ}C$ for 2 hours. The $N_2O$ conversion was increased at the decrease of space velocity and at the increase of temperature. The Ru/$Al_2O_3$ catalyst had the highest $N_2O$ conversion at low temperature and the best durability.

Characteristics of Nano Particle Precipitation and Residual Ozone Decomposition for Two-Stage ESP with DBD (배리어 유전체 방전형 2단 전기집진기의 나노입자 집진 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Ji, Jun-Ho;Yoon, Ki-Young;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1678-1683
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Although DBD high electron density and energy, its potential use as nano and sub-micron sized particle charging are not well known. Aim of this work is to determine design and operating parameters of a two-stage ESP with DBD. DBD and ESP are used as particle charger and precipitator, respectively. We measured particle precipitation efficiency of two-stage ESP and estimated ozone decomposition of both pelletized $MnO_2$ catalyst and pelletized activated carbon. To examine the particle precipitation efficiency, nano and sub-micron sized particles were generated by a tube furnace and an atomizer. AC voltage of $7{\sim}10$ kV(rms) and 60 Hz is used as DBD plasma source. DC -8 kV is applied to the ESP for particle precipitation. The overall particle collection efficiency for the two-stage ESP with DBD is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized $MnO_2$ catalyst or pelletized activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

  • PDF

Preparation of Spherical Energetic Composites by Crystallization/Agglomeration and their Thermal Decomposition Characteristics (결정화/응집 기법에 의한 구형 에너지 복합체 제조 및 그 열분해 특성)

  • Lee, Eun-Ae;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.158-164
    • /
    • 2016
  • Spherical DADNE/AP (1,1-diamino-2,2-dinitroethylen/ammonium perchlorate) energetic composites were produced by drowning-out/agglomeration (D/A). The agglomeration of DADNE with AP particles was found to be affected by the amount of the bridging liquid, stirring velocity and residence time. The composites appeared to grow dramatically with the amount of bridging liquid which triggers agglomeration. As the stirring velocity and the residence time increased, the size of composites increased and then tended to decrease. Thermal gravimetric analysis showed that the addition of DADNE activates the low temperature decomposition (LTD) of AP. For the neat AP, the only about 30 wt% of AP was found to decompose at the LTD. On the other hand, it was found that 70 wt% of AP decomposed when DADNE was added by physical mixing and 90 wt% of AP decomposed when the DADNE/AP composites were prepared by the D/A method.

Fully-Implicit Decoupling Method for Incompressible Navier-Stokes Equations (비압축성 나비어-스톡스 방정식의 완전 내재적 분리 방법)

  • Kim, Kyoung-Youn;Baek, Seung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1317-1325
    • /
    • 2000
  • A new efficient numerical method for computing three-dimensional, unsteady, incompressible flows is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used for both the diffusion and convection terms, is adopted. Based on an approximate block LU decomposition method, the velocity -pressure decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully -implicit time advancement scheme. Since the iterative procedures for the momentum equations are not required, the velocity components decouplings bring forth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to minimal channel flow unit with DNS (Direct Numerical Simulation).