• 제목/요약/키워드: Decomposition velocity

검색결과 199건 처리시간 0.022초

대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구 (A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine)

  • 정수진;이천환
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • 제22권2호
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF

오존의 살균 및 탈취와 오존발생기의 발생농도 변화

  • 윤영미;고명석;김현종;이은미;정봉우;이현철
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.473-474
    • /
    • 2000
  • 오존의 강력한 산화력은 돈사 내 공기중에 부유하는 세균에 대하여 큰 살균효과를 나타냈는데, 이는 $0.05{\sim}0.07ppm$의 작업자와 돼지에게 피해를 최소화 할 수 있는 오존 농도 범위여서 그 효과가 크다 하겠다. 본 실험에서 오존은 발생장치 내에서의 원료공기(산소)의 체류시간에 따라 각기 다른 발생농도를 나타냈으며, 풍량이 14.7m^3/min$ 일 때 가장 높은 오존 농도를 보임을 알 수 있었다. 또한 오존 발생기를 개방형에서 폐쇄형으로 변형함으로써 같은 조건에서 더 높은 오존발생농도(폐쇄형: 0.13ppm, 개방형: 0.08ppm)를 얻을 수 있었다.

  • PDF

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

질산염 전구체 원료로 분무 열분해 방법에 의한 YBCO 박막 증착 (Deposition of YBCO Thin Film by Aerosol Assisted Spray Pyrolysis Method using Nitrate Precursors)

  • 김병주;홍석관;김재근;이종범;이희균;홍계원
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.68-73
    • /
    • 2010
  • Y123 films have been deposited on $LaAlO_3$ (100) single-crystal and IBAD substrates by spray pyrolysis method using nitrate precursors. Ultrasonic atomization was adopted to decrease the droplet size, spraying angle and its moving velocity toward substrate for introducing the preheating tube furnace in appropriate location. A small preheating tube furnace was installed between spraying nozzle and substrate for fast drying and enhanced decomposition of precursors. C-axis oriented films were obtained on both LAO and IBAD substrates at deposition temperature of around $710{\sim}750^{\circ}C$ and working pressures of 10~15 torr. Thick c-axis epitaxial film with the thickness of $0.3{\sim}0.6\;{\mu}m$ was obtained on LAO single-crystal by 10 min deposition. But the XRD results of the film deposited on IBAD template at same deposition condition showed that the buffer layers of the IBAD metal substrate was affected by long residence of metal substrate at high temperature for YBCO deposition.

실린더 근접후류에서 위상학적 구조와 2차 와류의 상호 관계 (Interrelationship Between Topological Structures and Secondary Vortices in the Near Wake of aCircular Cylinder)

  • 성재용;유정열
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1355-1364
    • /
    • 2001
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder, where the Taylor's hypothesis does nut hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV for various planes of view. The convection velocities of the Karman and secondary vortices are evaluated from the trajectory of the vortex center. Then, saddle points are determined by applying the critical point theory. It is shown that the inclination angle of the secondary vortices agrees well with the previous experimental data. The flow fields in a moving frame of reference have several critical points and the mushroom-like structure appears in the streamline patterns of the secondary vortices. Since the distributions of fluctuating Reynolds stresses defined by triple decomposition are closely related with the existence of secondary vortices, the physical meaning of them is explained in conjunction with the vortex center and saddle point trajectories.

Numerical investigation on vortex-induced vibration response characteristics for flexible risers under sheared-oscillatory flows

  • Xue, Hongxiang;Yuan, Yuchao;Tang, Wenyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.923-938
    • /
    • 2019
  • Surge motion of top-end platform induced by periodic wave makes marine flexible riser encounter equivalent sheared-oscillatory flow, under which the Vortex-induced Vibration (VIV) response will be more complicated than pure sheared flow or oscillatory flow cases. Based on a time domain force-decomposition model, the VIV response characteristics under sheared-oscillatory flows are investigated numerically in this paper. Firstly, the adopted numerical model is validated well against laboratory experiments under sheared flow and oscillatory flow. Then, 20 sheared-oscillatory flow cases with different oscillation periods and top maximum current velocities are designed and simulated. Under long and short oscillation period cases, the structural response presents several similar features owing to the instantaneous sheared flow profile at each moment, but it also has some different patterns because of the differently varying flow field. Finally, the effects and essential mechanism of oscillation period and top maximum current velocity on VIV response are discussed systematically.