• Title/Summary/Keyword: Decomposition rate

Search Result 1,181, Processing Time 0.067 seconds

Decomposition of Toxic Chemicals in Microemulsion by Electrolytic Oxidation Method (마이크로 에멀젼 상태에서 전기분해법을 이용한 독성물질 분해 연구)

  • Shim, Sung-Hyun;Chun, Byoung-Chul;Chung, Yong-Chan
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.218-223
    • /
    • 2008
  • Decomposition of reactive organic compound dispersed in microemulsion media by hydroxide ions and proton ions generated during electrolysis was tried and the half-lifes for decomposition were compared. Absorbance of p-nitrophenoxide produced from the decomposition of p-nitrophenylacetate (PNPA) was followed to find the rate of decomposition. The applied voltage, temperature, and the amount of substrate were changed to see the effects on the decomposition rate. The advantages of electrolysis in microemulsion system were the high solubilizing capacity of substrate, easy control of decomposition rate, low operation cost, no need for any addition of chemicals, and no byproducts. The mechanism of decomposition and the application to water purification were discussed.

  • PDF

Qualitative Changes in Grafted Cactus Cultivars during Simulated Transportation (모의운송시 접목선인장의 품종별 품질변화)

  • Yoon, Jung-Han;Song, Jong-Eun;Byoun, Hye-Jin;Park, Ju-Hyun;Kim, Young-Ho;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.575-582
    • /
    • 2011
  • This experiment was conducted to study the qualitative changes of grafted cactus after harvest and to examine the decomposition characteristics of pathogenic fungi which occurs or grows during the simulated shipping period. Plant materials with four varieties of Gymnocalycium mihanovichii var. friedrichii including, 'Hukwang', 'Huhong', 'Hwangwol', 'Yeunhwa' and two varieties of Chamaecereus silvestrii f. variegate such as 'Goldcrown' and 'Yellowcrown' were used. During the simulated shipping period, the fresh-weight, bulb diameter, carbon dioxide emission rate, and decomposition rate were observed. The regeneration rate and decomposition rate were observed for the grafted cactuses that were placed in a greenhouse environment with a temperature of $28{\pm}12^{\circ}C$ and humidity of $36{\pm}15.3%$ after 40 days of simulated shipping. There were reductions in the fresh-weight and bulb diameter in every variety as time passed while the carbon dioxide emission rate showed no meaningful difference by each variety. Furthermore, the decomposition rate in the scion was higher than in the stock. According to the analysis of pathogenic fungi by decomposition characteristics, Alternaria sp., Cladosporium sp., Colletotrichum sp., Fusarium sp., Penicillium sp. in G. mihanovichii var. friedrichii were found and Alternaria sp., Bipolaris sp., Cladospoirum sp. in C. silvestrii f. variegate were identified. Therefore, to maintain and improve the quality of grafted cactus, it is necessary to analyze the factors of decomposition from the time of harvest until the point of export and develop a process technology to minimize the decomposition rate.

Organic Phosphorus Decomposition Rates in the Youngsan River and the Sumjin River, Korea (국내 영산강과 섬진강의 유기인 분해속도)

  • Islam, Jahidul Mohammad;Kim, Bomchul;Han, Ji-sun;Kim, Jai-ku;Jung, Yukyong;Jung, Sungmin;Shin, Myoungsun;Park, Ju-hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.354-364
    • /
    • 2008
  • The variability in the phosphorus concentrations and the decomposition rates of organic phosphorus were measured in two rivers, the Youngsan River and the Sumjin River through four surveys in June, August and December of 2006 and February of 2007. Water samples were incubated for 20 days in a dark incubator and the change of forms of phosphorus (POP, DOP, DIP) were analyzed. By fitting the change to four types of models the decomposition rates of organic phosphorus were determined. The mean total organic phosphorus (TOP) decomposition rate coefficients in the Youngsan River and the Sumjin River were $0.036day^{-1}$ and $0.035day^{-1}$, respectively. In POP$\rightarrow$DIP model, the average decomposition rate coefficients in the Youngsan River and the Sumjin River were 0.049 and $0.035day^{-1}$, respectively. The average POP decomposition rate coefficients of POP$\rightarrow$DOP$\rightarrow$DIP model were $0.042day^{-1}$ and $0.038day^{-1}$ in the Youngsan River and Sumjin River respectively while the mean DOP decomposition rate coefficients were $0.255day^{-1}$ and $0.244day^{-1}$, respectively. In the Youngsan River, the mean POP$\rightarrow$DOP decomposition rate coefficient and POP$\rightarrow$DIP decomposition rate coefficient of POP$\rightarrow$DOP$\rightarrow$DIP, POP$\rightarrow$DIP model were $0.039day^{-1}$ and $0.007day^{-1}$, respectively. And in the Sumjin River, the above decomposition rate coefficients were $0.031day^{-1}$ and $0.004day^{-1}$, respectively. The decomposition rate coefficients measured in this study might be applicable for modeling of river water quality.

Research on Covert Communication Technology Based on Matrix Decomposition of Digital Currency Transaction Amount

  • Lejun Zhang;Bo Zhang;Ran Guo;Zhujun Wang;Guopeng Wang;Jing Qiu;Shen Su;Yuan Liu;Guangxia Xu;Zhihong Tian;Sergey Gataullin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1020-1041
    • /
    • 2024
  • With the development of covert communication technologies, the number of covert communication technologies using blockchain as a carrier is increasing. However, using the transaction amount of digital currency as a carrier for covert communication has problems such as low embedding rate, large consumption of transaction amount, and easy detection. In this paper, firstly, by experimentally analyzing the distribution of bitcoin transaction amounts, we determine the most suitable range of amounts for matrix decomposition. Secondly, we design a novel matrix decomposition method that can successfully decompose a large amount matrix into two small amount matrices and utilize the elements in the small amount matrices for covert communication. Finally, we analyze the feasibility of the novel matrix decomposition method in this scheme in detail from four aspects, and verify it by experimental comparison, which proves that our scheme not only improves the embedding rate and reduces the consumption of transaction amount, but also has a certain degree of resistance to detection.

The Determination of Anaerobic Biodegradability Rates Livestock Byproducts Using Double First-Order Kinetic Model

  • Shin, Kook-Sik;Yoon, Young-man;Jung, Ha-Il;Hyun, Byung-Geun;Cho, Hyun-Joon;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.542-548
    • /
    • 2015
  • This study investigated methane productions and a degradation rate of organic matters by German standard method, VDI4630 test. In this study, 4 livestock byproducts from livestock farm were selected for the investigation. The objective of this study was to estimate a distribution of organic matters by using the double first-order kinetics model in order to calculate the rate of biodegradable organic matters which degrade rapidly in the initial stage and the persistently biodegradable organic matters which degrade slowly later. As a result, all the byproducts applied in this study showed rapid decomposition in the initial stage. Then the decomposition rate began to slow down for a certain period and the rate became 5 times slower than the initial decomposition rate. This trend of decomposition rate changes is typical conditions of organic matter decompositions. The easily degradable factors ($k_1$) ranged between $0.145{\sim}0.257day^{-1}$ and persistent degradable factors ($k_2$) were $0.027{\sim}0.080day^{-1}$. Among these results, greater organic matter decomposition rates from VDI4630 had greater $k_1$ values (0.257, $0.211day^{-1}$) and smaller $k_2$ values (0.027, $0.030day^{-1}$) for dairy wastewater and forage byproduct, respectively.

A Study on Thermal Decomposition Characteristics of exo-tetrahydrodicyclopentadiene with Variation of Flow Rate (유량 변화에 따른 exo-tetrahydrodicyclopentadiene의 열분해특성에 관한 연구)

  • Kang, Saetbyeol
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.763-767
    • /
    • 2019
  • In this study, thermal decomposition characteristics of exo-tetrahydrodicyclopentadiene (exo-THDCP) composed with a single compound were analyzed by using a flow reactor. The experiments were carried out at $500^{\circ}C$, 50 bar and the products of each flow rate condition were analyzed by using a GC/MS. As a result, it was confirmed that exo-THDCP was decomposed mainly into cyclic compounds and a part was isomerized by heat. As the flow rate was increased, the kinds and ratio of compounds produced through the decomposition and isomerization were decreased. Also, the conversion rate of exo-THDCP and the amount of heat absorbed during the decomposition were also decreased. The compounds rapidly produced by decomposition were mainly formed through the radical form of 1-cyclopentylcyclopentene (1-CPCP) which is one of the intermediates that can be formed from exo-THDCP because it has the lowest activation energy of 42 kcal/mol.

Study on the Ozone Generation and Decomposition of Trichloroethylene Using Dielectric Ball Materials filled Barrier Discharge (유전체 볼 충진 배리어 방전을 이용한 오존 생성 및 TCE 분해처리에 관한 연구)

  • Han, Sang-Bo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.431-437
    • /
    • 2019
  • This work was carried out ozone generation and TCE decomposition characteristics using dielectric ball materials filled barrier discharge reactor and catalyst's reactor for ozone decomposition. Ozone concentration generated from $Al_2O_3$ or $TiO_2$ filled barrier discharge reactor was so high compared with non-filled discharge reactor. This reactor is good discharge structure for generating the high ozone concentration. In addition, TCE decomposition rate and COx conversion rate increased using $MnO_2$ filled discharge reactor, because ozone was decomposed at the same discharge space on the surface of $MnO_2$ catalysts. To identify the $MnO_2$ catalytic effects, TCE decomposition rate reached to 100[%] by the decomposition of ozone at $MnO_2$ catalyst's reactor by the arrangement of $Al_2O_3$ filled discharge reactor and $MnO_2$ catalyst reactor. Finally, $MnO_2$ catalyst is good materials for the decomposition of ozone and this process will be useful for decomposing VOCs such as TCE.

Kinetic Responses of Soil Carbon Dioxide Emission to Increasing Urea Application Rate

  • Lee, Sun-Il;Lim, Sang-Sun;Lee, Kwang-Seung;Kwak, Jin-Hyeob;Jung, Jae-Woon;Ro, Hee-Myoung;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • BACKGROUND: Application of urea may increase $CO_2$ emission from soils due both to $CO_2$ generation from urea hydrolysis and fertilizer-induced decomposition of soil organic carbon (SOC). The objective of this study was to investigate the effects of increasing urea application on $CO_2$ emission from soil and mineralization kinetics of indigenous SOC. METHODS AND RESULTS: Emission of $CO_2$ from a soil amended with four different rates (0, 175, 350, and 700 mg N/kg soil) of urea was investigated in a laboratory incubation experiment for 110 days. Cumulative $CO_2$ emission ($C_{cum}$) was linearly increased with urea application rate due primarily to the contribution of urea-C through hydrolysis to total $CO_2$ emission. First-order kinetics parameters ($C_0$, mineralizable SOC pool size; k, mineralization rate) became greater with increasing urea application rate; $C_0$ increased from 665.1 to 780.3 mg C/kg and k from 0.024 to 0.069 $day^{-1}$, determinately showing fertilizer-induced SOC mineralization. The relationship of $C_0$ (non-linear) and k (linear) with urea-N application rate revealed different responses of $C_0$ and k to increasing rate of fertilizer N. CONCLUSION(s): The relationship of mineralizable SOC pool size and mineralization rate with urea-N application rate suggested that increasing N fertilization may accelerate decomposition of readily decomposable SOC; however, it may not always stimulate decomposition of non-readily decomposable SOC that is protected from microbial decomposition.

A Comparative Study on Litter Decomposition of Emergent Macrophytes in the Littoral Zone of Reservoir

  • Jo, Kang-Hyun;Gong, Hak-Yang
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.333-339
    • /
    • 1998
  • Litter decomposition is a key process in energy flow and nutrient cycling in the freshwater littoral zone, and is regulated by physicochemical properties of litters. Using a litterbag method, we compared the decomposition rates of 16 different litter types from 10 plant species of the emergent macrophytes for one year in the littoral zone of the Paltangho Reservoir, Korea. The regression analysis fitted to the various decomposition models showed that mass loss of the litters with time best fitted an asymptotic function. The litters of the emergent macrophytes were composed of two compartments, labile and refractory. The macrophytic litters showed a great variety in decomposition dynamics depending on sources of litters. The labile compartment of the initial litter mass was in a wide range between 18% and 99%, and their decomposition rates varied from 0.0037 to 0.0131 day-1. The decomposition processes of the emergent macrophytes were determined by the relative amounts of the labile and refractory compartments and by the decomposition rate of the habile one in the littoral zone.

  • PDF

Nutrient dynamics in montane wetlands, emphasizing the relationship between cellulose decomposition and water chemistry

  • Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.33-42
    • /
    • 2005
  • Wetlands often function as a nutrient sink. It is well known that increased input of nutrient increases the primary productivity but it is not well understood what is the fate of produced biomass in wetland ecosystem. Water and sediment quality, decomposition rate of cellulose, and sediment accumulation rate in 11 montane marshes in northern Sierra Nevada, California were analyzed to trace the effect of nitrogen and phosphorus content in water on nutrient dynamics. Concentrations of ammonium, nitrate, soluble reactive phosphorus (SRP) in water were in the range of 27 to 607, 8 to 73, and 6 to 109 ppb, respectively. Concentrations of ammonium, calcium, magnesium, sodium, and potassium in water were the highest in Markleeville, which has been impacted by animal farming. Nitrate and SRP concentrations in water were the highest in Snow Creek, which has been impacted by human residence and a golf course. Cellulose decomposition rates ranged from 4 to 75 % per 90 days and the highest values were measured in Snow Creek. Concentrations of total carbon, nitrogen, and phosphorus in sediment ranged from 8.0 to 42.8, 0.5 to 3.0, and 0.076 to 0.162 %, respectively. Accumulation rates of carbon, nitrogen, and phosphorus fluctuated between 32.7 to 97.1, 2.4 to 9.0, and 0.08 to $1.14gm^{-2}yr{-1}$, respectively. Accumulation rates of carbon and nitrogen were highest in Markleeville and that of phosphorus was highest in Lake Van Norden. Correlation analysis showed that decay rate is correlated with ammonium, nitrate, and SRP in water. There was no correlation between element content in sediment and water quality. Nitrogen accumulation rate was correlated with ammonium in water. These results showed that element accumulation rates in montane wetland ecosystems are determined by decomposition rate rather than nutrient input. This study stresses a need for eco-physiological researches on the response of microbial community to increased nutrient input and environmental change because the microbial community is responsible for the decomposition process.

  • PDF