• Title/Summary/Keyword: Decomposition of Efficiency

Search Result 668, Processing Time 0.025 seconds

Effect of Pre-treatments on the Content of Heavy Metals in Packaging Paper

  • Jo, Byoung-Muk;Jeong, Myung-Joon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.465-469
    • /
    • 2006
  • Pre-treatment methods to determine various heavy metal contents in packaging papers were investigated by ICP-ES (Inductively Coupled Plasma Emission Spectrometry) analysis. Pre-treatment methods utilized in this study include dry ashing and decomposition methods ($HNO_{3-}HClO_{4-}HF,\;HNO_{3},\;and\;H_{2}SO_{4-}HNO_{3}$). They were compared with the conventional extraction (water) and migration (3% acetic acid) methods. The five representative heavy metals (Cd, As, Pb, Cr and Hg) were analyzed. For Cd, Hg, and As, the results were below detection limit of the instrument. In case of Cr and Pb, the migration test is considered to be a better method compared to the extraction test, but all pretreated methods showed much higher detection efficiency than the extraction or migration test. However, the detection ratio between the migration test and decomposition methods was different. Among all decomposition methods, the nitric acid - perchloric acid - hydrofluoric acid treatment brought a slightly higher detection value than others, but there was no significant difference among them except sulfuric acid - nitric acid method. Concerning Pb, the sulfuric acid - nitric acid method showed a low detection efficiency compared to other decomposition methods. The sulfuric acid - nitric acid method is, thus, not considered to be a suitable analysis method for Pb in packaging papers.

  • PDF

Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation (영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토)

  • Kim, Yong-Uhn;Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.469-476
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

Decomposition Based Parallel Processing Technique for Efficient Collaborative Optimization (효율적 분산협동설계를 위한 분해 기반 병렬화 기법의 개발)

  • Park, Hyung-Wook;Kim, Sung-Chan;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.818-823
    • /
    • 2000
  • In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

  • PDF

Color Image Encryption Technique Using Quad-tree Decomposition Method (쿼드트리 분할 기술을 이용한 컬러 영상 암호화 기술)

  • Choi, Hyunjun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2016
  • Recently, various types of image contents are being produced, and interest in copyright protection technology is increasing. In this paper, we propose an image encryption technology for color images. This technique divides the image into RGB color components and then performs quad-tree decomposition based on the edge of image. After the quad-tree partitioning, encryption is performed on the selected blocks. Encryption is performed on color components to measure encryption efficiency, and encryption efficiency is measured even after reconstitution into a color image. The encryption efficiency uses a visual measurement method and an objective image quality evaluation method. The PSNR values were measured as 7~10 dB for color difference components and 16~19 dB for color images. The proposed image encryption technology will be used to protect copyright of various digital image contents in the future.

Characteristics of Copper-catalyzed Cyanide Decomposition by Electrolysis (전해법에 의한 구리함유 시안의 분해특성)

  • Lee Jin-Yeung;Yoon Ho-Sung;Kim Sung-Don;Kim Chul-Joo;Kim Joon-Soo;Han Choon;Oh Jong-Kee
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • The characteristics of cyanide decomposition in aqueous phase by electric oxidization have been explored in an effort to develop a process to recycle waste water. Considering current efficiency and voltage, the free cyanide decomposition experiment by electric oxidization indicated that 5 V of voltage and copper catalytic Cu/CN mole ratio 0.05 was the most appropriate condition, where current efficiency was 26%, and decomposition speed was 5.6 mM/min. High voltage and excess copper addition increased decomposition speed a little bit but not current efficiency. The experiment of free cyanide density change proves that high density cyanide is preferred because speed and current efficiency increase with density. Also, the overall decomposition reaction could be represented by the first order with respcect to cyanide with the rate constant of $1.6∼7.3${\times}$10^{-3}$ $min^{-1}$ The mass transfer coefficient of electric oxidization of cyanide came out as $2.42${\times}$10^{-5}$ $min^{-1}$ Furthermore, the Damkohler number was calculated as 5.7 in case of 7 V and it was found that the mass transfer stage was the rate determining step.

Decomposition of Trichloroethylene by Using a Non-Thermal Plasma Process Combined with Catalyst (저온 플라즈마·촉매 복합공정을 이용한 트리클로로에틸렌의 분해에 관한 연구)

  • Mok, Young-Sun;Nam, Chang-Mo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2003
  • A non-thermal plasma process combined with $Cr_2O_3/TiO_2$ catalyst was applied to the decomposition of trichloroethylene (TCE). A dielectric barrier discharge reactor operated with AC high voltage was used as the non-thermal plasma reactor. The effects of reaction temperature and input power on the decomposition of TCE and the formation of byproducts including HCl, $Cl_2$, CO, NO, $NO_2$ and $O_3$ were examined. At an identical input power, the increase in the reaction temperature from 373 K to 473 K decreased the decomposition of TCE in the plasma reactor. The presence of the catalyst downstream the plasma reactor not only enhanced the decomposition of TCE but also affected the distribution of byproducts, significantly. However, synergistic effect as a result of the combination of non-thermal plasma with catalyst was not observed, i.e., the TCE decomposition efficiency in this plasma-catalyst combination system was almost similar to the sum of those obtained with each process.

  • PDF

Decomposition of $SO_x, NO_x$ by Plasma Discharge (플라즈마 방전에 의한 $SO_x, NO_x$의 분해)

  • 우인성;강현춘
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.73-77
    • /
    • 1999
  • In this study, $SO_2$ and $NO_2$ reduction have been investigated by using coil type plasma reactor. The experiments have been carried out changing discharge power, gas flow rate frequency and electrode style to obtain the decomposition rate. Decomposition rates of $SO_2$ and $NO_2$ were obtained 20~98% at gas flow rate 100ml/min~1,000ml/min and discharge power 5~25w respectively. The energy efficiency is very good at the high frequency power. The decomposition rate of $SO_2$ for 5kHz power supply is only 90%, but for 10kHz power supply is very high, more than 98% for 15w. The decomposition rate is increasing according to the residence time or the power consumption of the discharge. About 15W discharge power for 17$cm^2$ reactor is necessary to obtain the decomposition rate of $SO_2$ and $NO_2$ of more than 85% or 98%. From these experiments, the consumption power of the decomposition rate of 98% in 300ppm $NO_2$ gas in nitrogen gas proved to be 18W and 300ppm $SO_2$ gas to be 15w.

  • PDF

Bi-dimensional Empirical Mode Decomposition Algorithm Based on Particle Swarm-Fractal Interpolation

  • An, Feng-Ping;He, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5955-5977
    • /
    • 2018
  • Performance of the interpolation algorithm used in the technique of bi-dimensional empirical mode decomposition directly affects its popularization and application, so that the researchers pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional empirical mode decomposition (BEMD) and is derived from the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. All parameters involved in the interpolation process are determined by using the particle swarm optimization algorithm. The presented interpolation algorithm can solve those problems of low efficiency and poor precision in the interpolation operation of bi-dimensional empirical mode decomposition and can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher speed in the decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.

The performance analysis of photovoltaic module accounting for solar cell degradation and series resistance (태양전지 셀의 열화와 직렬저항의 변화에 따른 태양전지 모듈의 특성 해석)

  • Park, Chi-Hong;Kang, Gi-Hwan;Waithiru, L.;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.28-29
    • /
    • 2006
  • When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.

  • PDF