• Title/Summary/Keyword: Decomposition analysis

Search Result 1,933, Processing Time 0.029 seconds

Modeling and Analysis of Radar Target Signatures in the VHF-Band Using Fast Chirplet Decomposition (고속 Chirplet 분리기법을 이용한 VHF 대역 레이더 표적신호 모델링 및 해석)

  • Park, Ji-hoon;Kim, Si-ho;Chae, Dae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Although radar target signatures(RTS), such as range profiles have played an important role for target recognition in the X-band radar, they would be less effective when a target is designed to have low radar cross section(RCS). Recently, a number of research groups have conducted the studies on the RTS in the VHF-band where such targets can be better detected than in the X-band. However, there is a lack of work carried out on the mathematical description of the VHF-band RTS. In this paper, chirplet decomposition is employed for modeling of the VHF-band RTS and its performance is compared with that of existing scattering center model generally used for the X-band. In addition, the discriminative signal analysis is performed by chirplet parameterization of range profiles from in an ISAR image. Because the chirplet decomposition takes long computation time, its fast form is further proposed for enhanced practicality.

Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy (태양열 이용 바이오메탄 분해 해석연구)

  • Kim, Haneol;Lee, Sangnam;Lee, Sang Jik;Kim, Jongkyu
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Effect Analysis of Load Shedding Using Wavelet Singular Value Decomposition (부하 탈락 시 Wavelet Transform과 Singular Value Decomposition을 이용한 특성 분석)

  • Gwon, Gi-Hyeon;Kim, Won-Ki;Han, Jun;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.51-52
    • /
    • 2011
  • 본 논문에서는 WT(Wavelet Transform)와 SVD(Singular Value Decomposition)기법을 결합한 WSVD(Wavelet Singular Value Decomposition)를 사용하여, 송전계통에서 부하 탈락 시 나타나는 특성 및 외란검출의 유효성을 분석하였다. WSVD 방식을 이용한 외란검출을 모의하기 위해 EMTP-RV를 이용하여 부산 및 경남 일부지역 345kV급 송전계통을 모델링하였고, 이 계통에서 부하 탈락을 모의하였다. WSVD의 계산은 MATLAB을 통해 수행하였으며, 이 결과를 바탕으로 전력계통에서 부하 탈략량의 변화에 따른 특징을 분석하였다

  • PDF

Modal Identification of a Slender Structure using the Proper Orthogonal Decomposition Method (Proper Orthogonal Decomposition 기법을 이용한 세장한 구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, the Proper Orthogonal Decomposition (POD) method, which is a statistical analysis technique to find the modal characteristics of a structure, is adapted to identify the modal parameters of a tall chimney structure. A wind force time history, which is applied to the structure, is obtained by a wind tunnel test of a scale down model. The POD method is applied on the wind force induced responses of the structure, and the true normal modes of the structure can be obtained. The modal parameters including, natural frequency, mode shape, damping ratio and kinetic energy of the structure can be estimated accurately. With these results, it may be concluded that the POD method can be applied to obtain accurate modal parameters from the wind-induced building responses.

  • PDF

A Study on Effect of Domain-Decomposition Method on Parallel Efficiency in 2-D Flow Computations (2차원 유동장 해석에서 영역분할법에 따른 병렬효율성 검토)

  • Lee Sangyeul;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.147-152
    • /
    • 1998
  • 2-D flow fields are studied by using a shared memory parallel computer with a parallel flow analysis program which uses domain decomposition method and MPI library for data exchange at overlapped interface. Especially, effects of directional domain decomposition on parallel efficiency are studied for 2-D Lid-Driven cavity flow and flow through square cavity. It is known from the present study that domain decomposition along the main flow direction gives better parallel efficiency in 1-D partitioning than along the other direction. 2-D partitioning, however, is less sensitive to flow directions and gives good parallel efficiency for most of the cases considered.

  • PDF

ADVANCED DOMAIN DECOMPOSITION METHOD BY LOCAL AND MIXED LAGRANGE MULTIPLIERS

  • Kwak, Junyoung;Chun, Taeyoung;Cho, Haeseong;Shin, Sangjoon;Bauchau, Olivier A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents development of an improved domain decomposition method for large scale structural problem that aims to provide high computational efficiency. In the previous researches, we developed the domain decomposition algorithm based on augmented Lagrangian formulation and proved numerical efficiency under both serial and parallel computing environment. In this paper, new computational analysis by the proposed domain decomposition method is performed. For this purpose, reduction in computational time achieved by the proposed algorithm is compared with that obtained by the dual-primal FETI method under serial computing condition. It is found that the proposed methods significantly accelerate the computational speed for a linear structural problem.

Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides

  • Kim, Sanghoon;Song, Hyejin;Kim, Chul
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • We used differential scanning calorimetry and a thermogravimetric analysis to investigate the effect of being confined in mesoporous MCM-41 on the decomposition of lithium borohydride and magnesium borohydride when heated. The confinement did not cause a phase transition of the metal borohydrides inside MCM-41, but did lower their decomposition temperature. With the exception of a lowering of the temperature, the decomposition reaction mechanism of the metal borohydrides was nearly the same for both the bulk and confined samples.

Thermal Decomposition Kinetics of Polyurethane Elastomers Prepared with Different Dianiline Chain Extenders

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • Thermal decomposition kinetics for two different types of polyurethane elastomers prepared with 2,2'-dichloro-4,4'-methylenedianiline (MOCA) and 3,5-dimethyl-thiotoluenediamine (Ethacure-300), based on PTMG/TDI isocyanate prepolymer, were studied using non-isothermal thermogravimetric analysis (TGA). Thermograms were obtained and analyzed using Friedman (FR) and Kissinger-Akahira-Sunose (KAS) methods for activation energy, $E_a$. The results obtained showed that decomposition reaction of both samples was observed similarly to occur through three different stages, i.e., initial stage with vaporization of low molecular weight materials, second stage of urethane linkage decompositions, and later stage of polyol segment decompositions. However, activation energy values at each stage for the sample cured with Ethacure-300 was much lower than those for the sample with MOCA, exhibiting relatively lower thermal stability for the sample with Ethacure-300 than that with MOCA.

Block-triangular Decomposition of a Linear Discrete Large-Scale Systems via the Generalized Matrix Sign Function (행렬부호 함수에 의한 선형 이산치 대규모 계통의 블럭 삼각화 분해)

  • Park, Gwi-Tae;Lee, Chang-Hoon;Yim, In-sung
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.185-189
    • /
    • 1987
  • An analysis and design of large-scale linear multivariable systems often requires to be block triangularized form for good sensitivity of the systems when their poles and zeros are varied. But the decomposition algorithms presented up to now need a procedure of permutation, rescaling and a solution of nonlinear algebraic equations, which are usually burden. To avoid these problem, in this paper we develop a newly alternative block triangular decomposition algorithm which used the generalized matrix sign function on the Z-plane. Also, the decomposition algorithm demonstrated using the fifth order linear model of a distillation tower system.

  • PDF