• Title/Summary/Keyword: Decommissioning Waste

Search Result 323, Processing Time 0.025 seconds

Development of the draft guidelines of the decommissioning plan for a nuclear power plant in Korea (국내 원자로시설 해체계획서 세부 작성지침(안) 개발)

  • Lee, Jungmin;Moon, Joohyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.213-227
    • /
    • 2013
  • It is essential to prepare the decommissioning plan for a nuclear power plant (NPP) for the safe decommissioning of the NPP, minimization of the generation of decommissioning wastes, and protection of human beings and environment. Although Kori unit 1 and Wolsong unit 1 will be destined to their decommissioning in Korea in the near future. there is no provisons about preparing the decommissioning plan. In this paper, therefore, the draft guidelines of the decommissioning plan for a NPP were developed by considering the domestic situation, based on the comparative analyses of the regulatory guidelines of the decommissioning plan in U.S., U.K. and France. The draft guidelines are expected to play an important role to modify the domestic laws and regulations on the decommissioning of the NPP, and to give a license holder in charge of decommissioning the detailed instructions for preparing it in advance.

Options Manageing for Radioactive Metallic Waste From the Decommissioning of Kori Unit 1 (고리1호기 해체시 발생할 방사성금속폐기물 관리 옵션 연구)

  • Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • The purpose of this paper is to evaluate several leading options for the management of radioactive metallic waste against a set of general criteria including safety, cost effectiveness, radiological dose to workers and volume reduction. Several options for managing metallic waste generated from decommissioning are evaluated in this paper. These options include free release, controlled reuse, and direct disposal of radioactive metallic waste. Each of these options may involve treatment of the metal waste for volume reduction by physical cutting or melting. A multi-criteria decision analysis was performed using the Analytic Hierarchy Process (AHP) to rank the options. Melting radioactive metallic waste to produce metal ingots with controlled reuse or free release is found to be the most effective option.

Planning and decommissioning of a disused Theratron- 780 teletherapy machine and the dose assessment methodology for normal and radiological emergency conditions

  • Mohamed M.Elsayed Breky ;Muhammad S. Mansy;A.A. El-Sadek ;Yousif M. Mousa ;Yasser T. Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.238-247
    • /
    • 2023
  • The present work represents a technical guideline for decommissioning a disused teletherapy machine model Theratron-780 and contains category one 60Co radioactive source. The first section predicts the dose rate from the source in case of normal and radiological emergency situations via FLUKA-MC simulation code. Moreover, the dose assessment for the occupational during the whole process is calculated and compared to the measured values. A suggested cordoned area for safety and security in a radiological emergency is simulated. The second section lists the whole process's technical procedures, including (preview, dismantle, securing, transport and storage) of the disused teletherapy machine. Results show that the maximum obtained accumulated dose for occupational were found to be 24.5 ± 4.9 μSv in the dismantle and securing process in addition to 3.5 ± 1.8 μSv during loading on the transport vehicle and unloading at the storage facility. It was found that the measured accumulated dose for workers is in good agreement with the estimated one by uncertainty not exceeding 5% in normal operating conditions.

Nuclear waste attributes of near-term deployable small modular reactors

  • Taek K. Kim;L. Boing;B. Dixon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1100-1107
    • /
    • 2024
  • The nuclear waste attributes of near-term deployable SMRs were assessed using established nuclear waste metrics, which are the DU mass, SNF mass, volume, activity, decay heat, radiotoxicity, and decommissioning LLW volumes. Metrics normalized per unit electricity generation were compared to a reference large PWR. Three SMRs, VOYGR, Natrium, and Xe-100, were selected because they represent a range of reactor and fuel technologies and are active designs deployable by the decade's end. The SMR nuclear waste attributes show both some similarities to the PWR and some significant differences caused by reactor-specific design features. The DU mass is equivalent to or slightly higher than the PWR. Back-end waste attributes for SNF disposition vary, but the differences have a limited impact on long-term repository isolation. SMR designs can vary significantly in SNF volume (and thus heat generation density). However, these differences are amenable to design optimization for handling, storage, transportation, and disposal technologies. Nuclear waste attributes from decommissioning vary depending on design and decommissioning technology choices. Given the analysis results in this study and assuming appropriate waste management system and operational optimization, there appear to be no major challenges to managing SMR nuclear wastes compared to the reference PWR.

The Dismantling and Disposal Strategy of a Biological Shield for Minimization of Radioactive Concrete Waste During Decommissioning of a Nuclear Power Plant (원전 해체 방사성 콘크리트 폐기물 최소화를 위한 생물학적 차폐체 제거 및 처분 전략)

  • Cheon, Cheol-Seung;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • The decommissioning of Kori unit 1, which was permanently shut down in June of 2017, will be the first instance of the dismantling of a commercial nuclear power plant in Korea. The disposal of waste during the dismantling process accounts for a large part of the total decommissioning cost. Therefore, structures consisting of activated and contaminated concrete must be economically and safely dismantled by establishing a proper dismantling strategy. This study focuses on optimized dismantling and disposal scenarios pertaining to a biological shield. Several dismantling cases, regulations and technologies related to waste treatment as these practices pertain to nuclear power plants are analyzed. To minimize the amount of waste from the biological shield dismantling process, an optimized dismantling scenario is presented and disposal alternatives for dismantled concrete waste are proposed.

A Study on the Adoption of Cyclotron Decommissioning Plan Criteria by the Analysis of Domestic Relocation and Abroad Dismantling Practices (국내 사이클로트론 이전 및 해외 해체 사례 분석을 통한 해체 계획 기준 도입 연구)

  • Woo, Rina;Kim, Yongmin;Song, Minchul;Cho, Daehyung;Lee, Jaesung;Kim, Wantae
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • There are many reasons for decommissioning of cyclotron such as not only age-related deficiency, any serious wear or damage but also relocation, upgrade and changing mission. Decommission of cyclotron in USA and EU give rise to a lot of low-level radioactive waste and costs. Various research on decommissioning of particle accelerator have been carried to reduce the cost of decommissioning in USA and EU. In USA, the NRC require DFP (Decommissioning Funding Plan) to authorized licenser by 10 CFR Part 30.35. To resolve radioactive waste problem and reduce the estimated cost of cyclotron decommissioning, we should consider technical aspects (decommissioning procedures, decontamination techniques, etc.) and safety aspects(residual radioactivity, the expected dose, etc) for decommissioning. In this study, we analyzed practical information on the decommissioning of cyclotron in ANL (Argonne National Laboratory) and Belgium (EU). And we investigated the experience on the cyclotron relocation from SNUH (Seoul National University Hospital) to SKKU (Sungkyunkwan University). From these results, we provide the basic data for establishing of relevant standards on domestic cyclotron decommissioning. It is necessary to adopt the DFP for safe and economic decommissioning and waste recycling. These result could be utilized for the establishment on the standards and useful requirements.

Development of Micro-Blast Type Scabbling Technology for Contaminated Concrete Structure in Nuclear Power Plant Decommissioning

  • Lee, Kyungho;Chung, Sewon;Park, Kihyun;Park, SeongHee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers' radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1-107 Bq·g-1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr-1 decontamination speed, better than that of TWI (7,500 cm2·hr-1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.

A multi-criteria decision-making process for selecting decontamination methods for radioactively contaminated metal components

  • Inhye Hahm ;Daehyun Kim;Ho jin Ryu;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • Various decontamination technologies have been developed for removing contaminated areas in industries. Although it is important to consider parameters such as safety, cost, and time when selecting the decontamination technology, till date their comparative study is missing. Furthermore, different decontamination technologies influence the decontamination effects in different ways. Therefore, this study compares different decontamination techniques for the steam generator using a multicriteria decision-making method. A steam generator is a large device comprising both low- and very low-level waste (LLW, VLLW) and reflects the difference in weights of the standards according to the classification of the waste. For LLW and VLLW decontaminations, chemical oxidizing reduction decontamination (CORD) and decontamination grit blasting were used as the preferred techniques, respectively, considering the purpose of decontamination differs based on the initial state of waste. An expert survey revealed that safety in LLW and waste minimization in VLLW exhibited high preference. This evaluation method can be applied not only to the comparison between each process, but also to the creation of process scenarios. Therefore, determining the decontamination approach using logical decision-making methods may improve the safety and economic feasibility of each step in the decommissioning process and ensure a public acceptance.