• Title/Summary/Keyword: Decolorization

Search Result 322, Processing Time 0.024 seconds

Decolorization of Wastewater and Collecting of Sludge from Hanji Production (한지 생산공정에서 발생하는 폐수의 탈색 및 슬러지 회수)

  • Choi, Hee-Seon;Kim, Tai-Jin
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.351-356
    • /
    • 2000
  • The decolorization of wastewater and the collecting conditions of final sludge from hanji production were investigated. Black wastewater (50 mL) from the process cooking with NaOH could be effectively decolorized by 2.0 g of $Ca(OCl)_2$ So, if excess bleach $Ca(OCl)_2$ used in bleaching process were recycled, the decolorization of wastewater by adding less $Ca(OCl)_2$ would be successfully realized. However, the decolorization by electrolyzed oxidation was ineffective. The final sludge could be effectively collected by polymer coagulator, but the addition of $Al_2(SO_4)_3$ was required, and the pure fibrous sludge could not be collected. Therefore, surfactants such as triethanolamine and Triton X-100 were used instead of polymer coagulator. The collecting yield was obtained about 85% as good as those by polymer coagulator. When mixed surfactants were used in collecting the final sludge, $Al_2(SO_4)_3$ was not required. In addition, as the pure fibrous sludge could be collected, the effective recycling of sludges would be done.

  • PDF

Color Removal of the Wastewater containing the Pigml:mts using Wastewater Treatment Technologies (안료폐수의 탈색연구)

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.429-439
    • /
    • 2000
  • Various wastewater treatment technologies were applied for decolorization and disposal of the wastewater containing the pigments, which consist of Lake Red C(Barium) or/and Lithol Rubine(Calcium) pigments. In an application of ozonation $COD_{Mn}$ was generally decreased with an increase of amounts of ozone applied, however, the decolorization effect was not that good except for Lithol Rubine series. In an application of Fenton oxidation and electrochemical process, a good $COD_{Mn}$ removal effect for all the pigment wastewater and a slight decolorization effect for a part of Lithol Rubine series were observed. In an application of ultra filtration(UF) and reverse osmosis(RO), an excellent $COD_{Mn}$ removal and decolorization(almost 100%) effects of all the pigment wastewater were observed. Thus the water treated by the UF and RO could be reusable and thus save operating costs of the pigment manufacturing plants.

  • PDF

Enzymatic Decolorization of Various Dyes by Trametes versicolor KCTC 16781 (Trametes versicolor KCTC 16781에 의한 다양한 염료의 색도제거 특성)

  • 박철환;이유리;김탁현;이명구;이병환;이진원;김상용
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.398-403
    • /
    • 2003
  • Due to the low biodegradability of dyes, conventional biological wastewater treatment systems are inefficient in treating dye wastewater. Various white-rot fungi were investigated for the decolorization of six industrial dyes (reactive blue 5, reactive blue 16, reactive black 5, acid black 52, reactive orange 16, and acid violet 43). Among ten fungi, T. versicolor KCTC 16781 was selected as a testing strain because this had the best performance of decolorization for six dyes from the results of the solid culture experiments. In liquid culture medium, T. versicolor KCTC 16781 decolorized over 96% of six dyes for 48 hrs. Laccase started to produce in the early stage of the culture, and showed the highest peak value of 2.3 U/mL in 24 hrs. Enzyme activity remained constant until the end of culture. Fungal decolorization is a promising alternative to replace or supplement present treatment process.

Production of Lignin Degrading Enzymes and Decolorization of Dye Compounds by White-rotting Fungi Coriolus hirsutus LD-1 (백색부후균 Coriolus hirsutus LD-1의 리그닌분해효소 활성과 염료탈색에 관한 연구)

  • Nam, Eun-Sook;Ha, Sang-Woo;Park, Shin-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2006
  • The present research was undertaken to investigate the activities of ligninolytic enzymes and dye-decolorization capabilities of white-rotting fungi Coriolus hirsutus LD-1. The isolated white-rotting fungi (Coriolus hirsutus LD-1) produced laccase (16,388.9 U/L) and manganese-dependent peroxidase (19.81 U/L) but it did not produce lignin peroxidase. When the isolated fungi was incubated with the treatment of dyes for 8 days, the rates of decolorization of remazol brilliant blue R and bromophenol blue were 70.2% and 98%, respectively. The activity for manganese-dependent peroxidase was low, whereas that for laccase was very high. Moreover, the laccase was more effective to decolor when compared to manganese-dependent peroxidase. The results suggested that laccase of Coriolus hirsutus LD-1 might be playing an important role in the decolorization of the dyes.

Decolorization of a Dye by Immobilized Lignin Degrading Enzymes Generated from Transformants of Merulius tremellosus Fr. (아교버섯 형질전환체가 생산한 리그닌분해 고정화효소에 의한 염료 탈색)

  • Min, Dong-Suk;Ryu, Sun-Hwa;Kim, Myung-Kil;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.225-227
    • /
    • 2012
  • Lignin degrading enzymes from white rot fungi show broad substrate specificities, and therefore they can degrade variety of recalcitrant compounds. We have used three different protocols for the generation of immobilized laccase and manganese peroxidase crude enzymes from the genetically transformed strains of Merulius tremellosus Fr. These immobilized enzymes were used in the decolorization of Remazol Brilliant Blue R (RBBR), and they showed about 75% decolorization rates during the 48 h reactions. Although the decolorization efficiency decreased by 10-15% after a repeated use of the immobilized enzymes, these can be reused in various degrading reactions.

Melanoidin decolorization by immobilized cells of Aspergillus awamori, B-2 (Aspergillus awamori B-2의 균사체 고정화 의한 Melanoidin 탈색)

  • Ryu, Beung-Ho;Kim, Hye-Sung;Ha, Mi-Suk;Jung, Jong-Sun;Bin, Jae-Hun;Lee, Yung-Sook;Chung, Soo-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.1
    • /
    • pp.47-52
    • /
    • 1989
  • Aspergillus awamori, B-2 which has a high ability to decolorize melanoidin was selected among various fungi. Aspergillus awamori, B-2 showed the highest decolorization activity when it was cultivated in a melanoidin medium containing 3.0% glucose, 0.5% yeast extract, 0.1 % $KH_2PO_4\;and\;0.05%\;MgSO_4{\cdot}7H_2O$ at an initial pH 7.0 at $37^{\circ}C$ for 5 days. Mycelia immobilized system with. Ca-alginate was more effective on melanoidin decolorization activity showed approximately 70% in 10 days under the optimal conditions. Continuous decolorization of melanoidin using, reuse of immobilized mycelia showed an almost constant decolorization of abort 60-70% for 15 days.

  • PDF

Decolorization of Aromatic Dyes by White Rot Fungus Coriolus hirsutus (흰구름버섯(Coriolus hirsutus)에 의한 방향족 염료의 탈색)

  • Song, Yeon-Hong;Choi, Chul-Min;Kim, Chang-Jin;Shin, Kwang-Soo
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.252-256
    • /
    • 1997
  • The white rot fungus Coriolus hiysutus decolorized several recalcitrant dyes. Four different types of dyes, including azo, triphenyl methane, heterocyclic, and polymeric dye, were treated by the mycelial preparation. Triphenyl methane dye, bromophenol blue lost over 95% of its color. Congo red and Poly R-478 were decolorized less than bromophenol blue, 57 and 55%, respectively. However, heterocyclic dye, methylene blue was not decolorized significantly and only red shift was observed. Extracellular laccase and peroxidase activities were appeared maximally in high level of dye decolorization media. In electrophoretic experiments, common active bands of laccase and peroxidase were found in all dye decolorized medium. These results indicated that the culture conditions which yield high levels of laccase and peroxidase activity lead to high levels of dye decolorization, and these two enzymes might be play an important roles in dye decolorization.

  • PDF

The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent

  • Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.

Isolation of Novel White-rot Fungus and Effect for Decolorization of Dye Wastewater (새로운 염색폐수(染色廢水) 색도(色度) 제거(除去) 백색부후균(白色腐朽菌)의 분리(分離) 및 색도(色度) 제거(除去) 효과(效果))

  • Nam, Youn-Ku;Kwon, Hyuk-Ku;Lee, Bong-Joon;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.381-385
    • /
    • 2006
  • For decolorization of synthetic dyes, One fungus(HUE05-1) which was isolated from textile wastewater collected from industrial complex in Korea showed excellent ability of removing synthetic dyes. This fungus was identified as Basidiomycetes species by Internal Transcribed Spacers (ITS) sequence. Isolated fungi. HUE05-1 completely decolorized all dyes in both solid and liquid condition. The decolorization results were Reactive Orange-16, 97.12%; Reactive Blue-19, 92.09%; Reactive Blue-49, 97.04%; Reactive Yellow-145, 95.53%; Acid Orange-10, 99.18%; Acid Violet-43, 98.73%; Acid Blue-350, 94.71% and Disperse Blue-106, 90.07%.

Decolorization of Azo Dyes by Aspergillus sojae B-10

  • Ryu, Beung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.215-219
    • /
    • 1992
  • Biodegradation of azo dyes such as Amaranth, Sudan III and Congo-Red by Aspergillus sojae B-10 was demonstrated using Aspergillus sojae B-10. Aspergillus sojae B-10 showed the greatest decolorization ability when it was cultivated in a nitrogen-limited medium containing, azo dyes(10 mg/l), 2.0% glucose, 0.06% sodium nitrate, 0.1% $KH_PO_4$, 0.5% MgSO_4$$7H_2O$ at pH 5.0 and $37^\circ{C}$ for 5 days. Under optimal conditions, Amaranth started being decolorized within 24 hr and was almost complete after decolorization of 4 days incubation. Sudan III was completely decolorized after a cultivation of 5 days. However, Congo-Red was not completely decolorized until 5 days of cultivation.

  • PDF