• 제목/요약/키워드: Deckhouse

검색결과 26건 처리시간 0.022초

선박 주기관에 의한 횡진동 저감을 위한 구조보강 연구 (A Study on the Structural Reinforcement for the Reduction of Transverse Vibration by Ship's Main Engine)

  • 신상훈;고대은;임홍일
    • 한국산학기술학회논문지
    • /
    • 제20권8호
    • /
    • pp.279-285
    • /
    • 2019
  • 다양한 형태의 선체 진동 중, 선체 선미 및 거주구의 횡방향 진동은 대부분 주기관의 횡기진력으로부터 유발되는데, 주기관과 연결된 주변 구조물과의 공진이 발생 할 수 있으므로 공진회피 설계가 반드시 필요하다. 공진 회피를 위한 가진 주파수는 주기관 및 프로펠러 사양으로부터 추정 가능하나, 기관실 주변 구조물의 고유 진동수는 형상의 다양성 등에 의해 추정이 쉽지 않고 경험을 위주로 한 방진 설계가 수행되고 있는 현실이며, 이로 인해 시운전 중에 발생하는 진동 문제는 공정지연, 현장 인력의 과다 투입 및 설계의 반복 수행 등 많은 문제점이 발생하고 있다. 본 연구에서는8,600TEU급 컨테이너선을 대상으로 유연한 설계를 위해 선체 구조배치의 변경 없이 주기관만 12기통에서 10기통으로 변경하는 경우에 대해 주기관 횡진동에 의한 공진 문제를 다루었다. 연구 결과로서, 주기관 횡기진력과 기관실 주변 구조와의 공진 회피를 위한 효율적인 구조보강 설계지침을 제시하였으며, 설계 현장의 실제적인 방진설계 지침으로 활용이 기대된다.

고부가가치선의 Unit Cabin Mock-up을 이용한 캐빈소음 저감 연구 (Cabin Noise Reduction Using Unit Cabin Mock-up of High Value-added Vessel)

  • 송근복;주원호
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1210-1215
    • /
    • 2010
  • Unit cabin means room, which is installed in the high value-added vessel such as drill ship, offshore platform and FPSO, after pre-assembled. In order to develop the noise control design for a unit cabin, a variety of acoustic tests such as sound absorption, transmission and radiation measurements were carried out by using the deckhouse mock-up. From the tests, it was found out that the sound transmission loss between cabin and corridor was 13 dB below than FPSO standard and the combined noise level of the unit cabin was dominated by the radiated noise from wall panel in low frequency range. Based on the test results, design guidelines for the noise control of the unit cabin were fully established, such as the improvement of sound transmission loss between the cabin and corridor, and radiated cabin noise reduction.

부유식 석유생산/저장/하역 선박(FPSO)의 소음예측 및 저감 (A Noise Control of a Floating, Production, Storage and Offloading (FPSO))

  • 김동해;고경은
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.550-553
    • /
    • 2004
  • Recently, the demand for the Floating, Production, Storage, and Offloading facility (FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. The 36,8000 DWT class FPSO was built in Hyundai Heavy Industries and will be installed in Offshore Angola. She dose not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise sources are contributing to the cabin noise of the accommodation are classified into three classes such as the machinery in the engine room and the deckhouse, HVAC system, and the topside equipments. In general, the noise regulation for the offshore structure is severer than that of the cargo ship and acceptable noise limit of cabin is specified as 45 dB(A). This paper describes the procedure of noise analysis, the countermeasures of noise control, and the measurement results of the quay trial. In order to minimize the noise levels, careful attention have to be paid by the special committee of experts from the initial design stage to the delivery. Proper countermeasures, considering the characteristics of sources and receiver spaces, were applied from the noise prediction and various experiment results. Finally, this ship was successfully delivered with excellent noise properties. The technology to minimize the noise levels for FPSO has been established throughout the construction of this ship.

  • PDF

부유식 석유생산.저장.하역선박의 소음해석 (A Noise Prediction of Floating, Production, Storage and Offloading(FPSO))

  • 김영현;김동해
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.307-310
    • /
    • 2000
  • Recently, the demand for the Floating, Production Storage, and Offloading facility(FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. The basic characteristics of a 343,000 DWT class FPSO which is being built in Hyundai Heavy Industries and shall be installed in offshore Angola, is almost same as that of oil carriers. However, she do not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise source contributing to the cabin noise of the accommodation, are classified into the machine in the engine room and the deckhouse, HVAC system, and the topside equipments. In general, the noise regulation for the offshore structure is much severer than that of the common commercial ships and the maximum acceptable sound pressure level of cabins is specified in 45dB(A). This paper describes the procedure of noise analysis along with its results. Noise analysis has been carried out for the case of emergency diesel generator running condition and the case of normal production condition and the results has been compared with the measurement results of the first case. Based on the results, proper countermeasures to reduce excessive noise level has been applied considering the characteristics of sources and receiver spaces and can be satisfied the specifications at all spaces.

  • PDF

Zumwalt(DDG-1000)급 구축함의 운용 시스템 및 탑재 가능 무기체계 분석을 통한 시사점 도출 (The implication derived from operating control organization and feasible weapon system analysis of Zumwalt(DDG-1000) Class Destroyer)

  • 이형민
    • Strategy21
    • /
    • 통권34호
    • /
    • pp.178-206
    • /
    • 2014
  • The battlefield environment in the maritime has been changed by advanced IT technology, variation of naval warfare condition, and developed military science and technology. In addition, state-of-the-art surface combatants has become to multi-purpose battleship that is heavily armed in order to meet actively in composed future sea battlefield condition and perform multi-purpose missions as well as having capability of strategic strike. To maximize the combat strength and survivability of ship, it is not only possible for Zumwalt(DDG-1000) class combatant to conduct multi-purpose mission with advanced weapon system installation, innovative hull form and upper structure such as deckhouse, shipboard high-powered sensor, total ship computing environment, and integrated power control but it was designed so that can be installed with energy based weapon systems in immediate future. Zumwalt class combatant has been set a high value with enormous threatening surface battleship in the present, it seems to be expected that this ship will be restraint means during operation in the littoral. The advent of Zumwalt class battleship in the US Navy can be constructed as a powerful intention of naval strength building for preparing future warfare. It is required surface ship that can be perform multi-purpose mission when the trend of constructed surface combatants was analyzed. In addition, shipboard system has been continuously modernized to keep the optimized ship and maximize the survivability with high-powered detection and surveillance sensor as well as modularity of combat system to efficient operation.

기계식 구동기를 이용한 선박진동의 능동제어장치 개발 (A Study to Develop an Active Control System of Ship Vibration Using a Mechanical Actuator)

  • 조대승;이수목;정균양
    • 대한조선학회논문집
    • /
    • 제32권4호
    • /
    • pp.105-113
    • /
    • 1995
  • 동작중에 힘의 크기를 조절할 수 있는 기계식 구동기를 이용하여 주기관 회전수의 특정차수 진동을 능동제어하는 시스템을 개발하였다. 본 시스템에 적용된 제어 알고리즘은 주기관과 구동기의 위상차에 따른 진동크기 변화를 이용하여 초기 작동시의 구동기 최적 위상 및 힘을 결정하는 알고리즘과 주기관 회전속도의 변화를 추종하여 지속적으로 최적제어를 수행하는 알고리즘으로 구성되어 있다. 개발된 알고리즘은 제어대상 구조계에 대한 동특성 파악이 필요없을 뿐만 아니라 제어 중에도 구조계의 변화를 추종하여 제어할 수 있다는 장점이 있다. 구동기 성능과 제어 알고리즘의 검증을 위하여 30만톤급 유조선과 2,200 TEU 콘테이너 운반선의 선체 상부구조 진동제어시험을 수행한 결과 본 제어시스템은 주기관의 전 회전속도구간에서 제어치수 성분의 선체 상부구조진동을 제어전 진동의 1/2∼1/6 수준으로 감소시킬 수 있음을 확인하였다.

  • PDF