• Title/Summary/Keyword: Deck plate

Search Result 278, Processing Time 0.021 seconds

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Development of Structural Design Program to apply the Twin-Hull Car-ferry (쌍동형 카페리 구조설계용 프로그램 개발)

  • Lee, Jung-Ho;Oh, Jung-Mo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Twin-hulls frequently incur structural damage at connecting members between the hull and deck induced by pitching motions during voyages. so, reasonable reinforcement is necessary around vulnerable spots such as corner knuckle, the chine bottom and inner hull. Since guidelines for structural design are not clear, engineers often respond by reinforcing plate thickness, changing stiffener sizes and reducing frame spacing, etc. These members constitute about 85 % of the longitudinal dimensions of the ship, so it is necessary to locally reinforce certain points to minimize weight stress, and also solve construction cost problems while securing the freeboard margin. Therefore, we developed a new program by analyzing the structural design procedures for the twin car-ferries based on Korean Register of Shipping (KR) High Speed Craft Rules, identifying items that need to be added. In order to ensure the reliability of buckling estimations for procedures and design programs, we conducted a comparative study with other standards and confirmed that differences were minimal.

Prediction of Crack Growth Lives of an Aged Korean Coast Guard Patrol Ship based on Extended Finite Element Method(XFEM) J-Integral (확장 유한 요소법(XFEM) J-적분을 이용한 노후 순시선의 균열 성장 수명 예측)

  • Kim, Chang-Sik;Li, Chun Bao;Kim, Young Hun;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.335-343
    • /
    • 2017
  • The Newman-Raju formula and contour integral-based finite element analyses(FEAs) have been widely used to assess crack growth rates and residual lives at crack locations in ships or offshore structures, but the Newman-Raju formula is known to be less accurate for the complicated weld details and the conventional FEA-based contour integral approach needs concentrated efforts to construct FEA models. Recently, an extended finite element method(XFEM) has been proposed to reduce those modeling efforts with reliable accuracy. Stress intensity factors(SIFs) from the approaches such as the Newman-Raju formula, conventional FEA-based J-integral, and XFEM-based J-integral were compared for an infinitely long plate with a propagating elliptic crack. It was concluded that the XFEM approach was far reliable in terms of prediction ability of SIFs. Assuming a 25 year-aged coast guard patrol ship had the prescribed cracks at the bracket toes attached to longitudinal stiffeners in way of deck and bottom, SIFs were derived based on the three approaches. To obtain axial tension loads acting on the longitudinal stiffeners, long term hull girder bending moments were assumed to obey Weibull distribution of which two parameters were decided from a reference (DNV, 2014). For the complicated weld details, it was concluded that the XFEM approach could cost-effectively and accurately estimate the crack growth rates and residual lives of ship structures.

A Study on the Aerodynamic Stability of Long Span Pedestrian Bridges (장경간 보도교의 내풍안정성에 관한 연구)

  • Lee, Seungho;Jeong, Houigab;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.287-296
    • /
    • 2019
  • In recent years, a number of long span cable-stayed pedestrian bridges have been constructed to the advantages of relatively low cost construction and the many tourists visiting. However, most of the pedestrian bridges are located in parks or sightseeing areas, so they are conducted without proper review and design process. It is necessary to review the aerodynamic stability of the long span cable-stayed pedestrian bridge, and it should be designed in detail from various points of view rather than the road bridge. In this study, we investigated the wind characteristics of the cable-stayed pedestrian bridge, and the empirical equations for the relationship between the main span length and the fundamental natural frequencies are presented for future use. In addition, the flutter wind speed limit of the flat plate deck pedestrian bridge calculated using the Selberg's equation is also presented. The final aerodynamic bridge section which satisfied the aerodynamic stability was found from open grating method. The proposed method can be used for long span cable-stayed pedestrian bridge in the future.

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

A Numerical Analysis on the Diaphragm Structures for Improving Fatigue Performance in Orthotropic Steel Decks (강바닥판의 피로성능 향상을 위한 다이아프램 구조상세)

  • Shin, Jae Choul;An, Zu Og;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.559-573
    • /
    • 2007
  • Orthotropic steel decks are manufactured by welding thin plates therefore it is inevitable that there are abundant works of welding process. On connection of transverse rib web, crossing point of longitudinal rib, transverse rib and deck plate and cut-out parts of transverse rib are the significant position of stress concentration because of out of plane and oil-canning deformation caused by longitudinal rib distortion with shear force and distortion. At the current research, the crossing point where the orthotropic steel decks's effect of improving fatigue performance are high, not placing scallop and diaphragm which have same plane with transverse rib placed inside of longitudinal rib at the same time, the reduce effects of stress concentration at the cut-out section and the crossing are high. Especially the installation of the diaphragm causing great effects based on research results to stress concentration appearance reduce effects at the cut-out section, putting radius of curvature of the diaphragm's top and bottom as a target, as a result of carrying out the parametric analysis an optimal diaphragm form that has great effects in fatigue performance came to a conclusion. Also based on optimal diaphragm form, an advantage of the diaphragm optimal setting position for improvement of the fatigue performance came to a conclusion.

The Economic Analysis of Underground Parking Lot Frames adopting 8-Bay Parking Modules (8-Bay 주차모듈을 적용한 아파트 지하주차장 구조의 경제성 분석)

  • Yu, Yongsin;Yoon, Bohyung;Kim, Minsu;Kim, Taewan;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2019
  • On 30 June, 2017, the Ministry of Land, Infrastructure, and Transport announced the minimum size of parking section will be expanded in parking lots. The expansion of parking section could lead to increase in apartment prices because of increase in total area of the parking lots. It is necessary to adjust the column spacing and number in the parking lots and to apply the 8-Bay long-span parking module with good parking efficiency. According to the study, the construction cost of the 6-Bay module and 8-Bay module was almost the same. But The 8-Bay module was more economical than the 6-Bay module because of the reduction in total area of 8-Bay multi-moduel. The Result of construction cost of 8-Bay modules, Removal Deck-plate RC system was most economical. While the construction cost of PC system was higher due to increase in volume of the member, it would ensure sufficient economy by reducing the girder height to apply a pre-stress method. Also, the construction cost of hollow slab system was the highest. But it could be used as the underground parking lots for apartment, because it had the lowest cost per square meter. This Study has a academic significance by proving the applicability of the 8-Bay Module to underground parking lot of apartment. And it is expected that this study will be used as basic data to derive optimal construction method that applies 8-Bay Module.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.