• 제목/요약/키워드: Decision-Tree-Model

검색결과 740건 처리시간 0.027초

일개 종합병원의 민간 건강검진 수검자의 검진이용 특성, 건강행태 및 건강관리 수준 분석 (Analysis of Utilization Characteristics, Health Behaviors and Health Management Level of Participants in Private Health Examination in a General Hospital)

  • 김유미;박종호;김원중
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.301-311
    • /
    • 2013
  • 본 연구의 목적은 2차 종합병원급 건강검진센터를 이용한 민간 종합검진 환자의 검진 이용특성과 이들의 건강행태 및 건강관리 수준을 분석하는 것이다. 이를 위해 대전지역 일개 2차 종합병원급 건강검진센터의 2011년 20,696명의 민간 건강검진 수검자를 대상으로 이들의 2001년에서 2011년까지 11년간의 수검자료 150,501건을 분석하였다. 민간 종합검진 수검자의 검진군 분류를 위한 군집분석은 K-means기법의 z-score표준화 방법을 이용하여 분류하였으며, 정기/비정기 검진 분류모형 개발을 위해 로지스틱회귀분석, 의사결정나무, 신경망 분석을 이용하였다. 개발된 비정기 검진군 분류 모형에 따라 신규 검진군 중 비정기 검진군이 될 확률이 높은 1,000명을 추출하여 고객관리사업 대상자로 하였다. 분석결과, 수검자는 신규 검진군, 정기 검진군, 비정기 검진군으로 분류하였다. 신규 검진군은 30대가 많고, 신장질환 의심자의 비율이 높았다. 정기 검진군은 남자, 이상지혈증 의심 비율이 높았다. 비정기 검진군은 흡연율과 운동부족 비율이 높았고, 빈혈 및 당뇨의심 비율이 높았다. 의사결정나무 분석결과 비정기 검진환자의 특성에 영향을 미치는 변수로는 성별, 연령, 거주지, 운동, 빈혈, 이상지혈증, 당뇨, 비만, 간질환 등이었다. 특히 여자 수검자로서 빈혈 검사는 정상, 운동을 하지 않는 군이면서 비만이 의심되는 수검자의 비정기적 수검율은 71.4%에 달하였다. 이러한 연구결과 토대로 맞춤형 고객관리 사업을 진행한다면 건강검진센터 효율적인 운영에 기여할 수 있을 것이다.

머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발 (Building battery deterioration prediction model using real field data)

  • 최근호;김건우
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.243-264
    • /
    • 2018
  • 현재 전세계 배터리 시장은 이차전지 개발에 박차를 가하고 있는 실정이지만, 실제로 소비되는 배터리 중 가격 대비 성능이 좋고 재충전을 통해 다시 재사용이 가능한 납축전지(이차전지)의 소비가 광범위하게 이루어지고 있다. 하지만 납축전지는 복합적 셀(cell)을 묶어 하나의 배터리를 구성하여 활용하는 배터리의 특성상 하나의 셀에서 열화가 발생하면 전체 배터리의 손상을 가져와 열화가 빨리 진행되는 문제가 존재한다. 이를 극복하기 위해 본 연구는 기계학습을 통한 배터리 상태 데이터를 학습하여 배터리 열화를 예측할 수 있는 모델을 개발하고자 한다. 이를 위해 실제 현장에서 배터리 상태를 지속적으로 모니터링 할 수 있는 센서를 골프장 카트에 부착하여 실시간으로 배터리 상태 데이터를 수집하고, 수집한 데이터를 이용하여 기계학습 기법을 적용한 분석을 통해 열화 전조 현상에 대한 예측 모델을 개발하였다. 총 16,883개의 샘플을 분석 데이터로 사용하였으며, 예측 모델을 만들기 위한 알고리즘으로 의사결정나무, 로지스틱, 베이지언, 배깅, 부스팅, RandomForest를 사용하였다. 실험 결과, 의사결정나무를 기본 알고리즘으로 사용한 배깅 모델이 89.3923%이 가장 높은 적중률을 보이는 것으로 나타났다. 본 연구는 날씨와 운전습관 등 배터리 열화에 영향을 줄 수 있는 추가적인 변수들을 고려하지 못했다는 한계점이 있으나, 이는 향후 연구에서 다루고자 한다. 본 연구에서 제안하는 배터리 열화 예측 모델은 배터리 열화의 전조현상을 사전에 예측함으로써 배터리 관리를 효율적으로 수행하고 이에 따른 비용을 획기적으로 줄일 수 있을 것으로 기대한다.

머신러닝 기법을 이용한 재해강도 분류모형 개발 (Development of disaster severity classification model using machine learning technique)

  • 이승민;백선욱;이준학;김경탁;김수전;김형수
    • 한국수자원학회논문집
    • /
    • 제56권4호
    • /
    • pp.261-272
    • /
    • 2023
  • 최근 급격한 도시화와 기후변화에 따라 재난에 의한 피해가 증가하고 있다. 국내 기상청에서는 표준 경보(주의보, 경보)를 전국적으로 통일된 표준 경보 기준(3시간 및 12시간 최대 누적강우량)에 따라 발령하여 재해에 따른 지역별, 재난 사상별 특성이 고려되지 않은 문제점이 있다. 따라서 본 연구에서는 서울특별시, 인천광역시, 경기도의 호우·태풍에 대한 재해 피해액 및 누적강우량을 활용하여 대상지역별 재해강도에 따른 단계별 기준을 설정하고, 강우에 따라 발생할 수 있는 재해의 강도를 분류하는 모형을 개발하고자 하였다. 즉, 본 연구에서는 호우·태풍에 의한 재해 피해액 누적 분포 함수의 분위별로 재해강도의 범주(관심, 주의, 경계, 심각 단계)를 분류하였고, 재해강도의 범주에 따른 누적강우량 기준을 대상 지자체별로 제시하였다. 그리고 지자체별 재해강도 분류모형 개발을 위해 4가지(의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, XGBoost)의 머신러닝 모형을 활용하였는데 강우량, 누적강우량, 지속시간 최대 강우량(3시간, 12시간), 선행강우량을 독립변수로 이용하여 종속변수인 지자체별 재해강도를 분류하였다. 각 모형별 F1 점수를 이용한 정확도 평가 결과, 의사결정나무의 F1 점수가 0.56으로 가장 우수한 정확도를 보였다. 본 연구에서 제시한 머신러닝 기반 재해강도 분류모형을 활용하면 호우·태풍에 의한 재해에 대한 지자체별 위험 상태를 단계별로 파악할 수 있어, 재난 담당자들의 신속한 의사결정을 위한 기초 자료로 활용될 수 있을 것으로 판단된다.

재입원 예측 모형 개발에 관한 연구 (A Study on the Development of Readmission Predictive Model)

  • 조윤정;김유미;함승우;최준영;백설경;강성홍
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.435-447
    • /
    • 2019
  • 불필요한 재입원을 예방하기 위해서는 재입원 확률이 높은 집단을 집중적으로 관리할 필요가 있다. 이를 위해서는 재입원 예측모형의 개발이 필요하다. 재원예측 모형을 개발하기 위해 1개 대학병원의 2016년에서 2017년의 2년간의 퇴원요약환자 데이터를 수집하였다. 이때 재입원 환자는 연구 기간 내에 2번 이상 퇴원한 환자라 정의 하였다. 재입원환자의 특성을 파악하기 위해 기술통계와 교착분석을 실시하였다. 재입원 예측 모형개발은 데이터마이닝 기법인 로지스틱회귀모형, 신경망, 의사결정모형을 이용하였다. 모형평가는 AUC(Area Under Curve)를 이용하였다. 로지스틱회귀모형이 AUC가 0.81로 가장 우수하게 나옴에 따라 본 연구에서는 로지스틱 회귀모형을 최종 재입원 예측 모형으로 선정을 하였다. 로지스틱회귀모형에서 선정된 재입원에 영향을 끼치는 주요한 변수는 성별, 연령, 지역, 주진단군, Charlson 동반질환지수, 퇴원과, 응급실 경유 여부, 수술여부, 재원일수, 총비용, 보험종류 등이었다. 본 연구에서 개발한 모형은 1개병원의 2년치 자료이므로 일반화하기에는 제한점이 있다. 추후에 여러 병원 장기간의 데이터를 수집하여 일반화 할 수 있는 모형을 개발하는 것이 필요하다. 더 나아가 계획에 없던 재입원 까지 예측을 할 수 있는 모형을 개발하는 것이 필요하다.

사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안 (Improving Performance of Recommendation Systems Using Topic Modeling)

  • 최성이;현윤진;김남규
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.101-116
    • /
    • 2015
  • 많은 기관들이 데이터에 기반을 둔 의사결정을 수행해 왔으며, 특히 수치자료를 비롯한 정형 데이터가 이러한 목적으로 널리 활용되어 왔다. 하지만 최근에는 스마트기기와 소셜미디어의 발달로 인해 다양한 형태를 가진 방대한 양의 정보가 생성, 공유, 저장되면서, 전통적인 정형 데이터 기반 의사결정으로부터 비정형 빅데이터 기반 의사결정으로 관심의 전환이 이루어지고 있다. 데이터 기반 의사결정의 대표적 분야인 추천시스템 분야에서도 성능 향상을 위해 비정형 데이터를 활용해야 한다는 필요성이 최근 꾸준히 제기되고 있다. 특히 사용자의 성향이나 선호도는 고객의 니즈와 직결되기 때문에, 비정형 데이터 분석을 통해 사용자의 성향을 파악하고 이를 통해 상품 추천 및 구매 예측의 정확도를 향상시키기 위한 노력이 매우 시급하게 이루어질 필요가 있다. 따라서 본 연구에서는 사용자의 성향을 측정하여 재구매 예측 정확도, 특히 카테고리별 재구매 예측 정확도를 높임으로써, 궁극적으로 추천시스템의 성능을 향상시킬 수 있는 방안을 제시한다. 구체적으로는 사용자의 일상적인 인터넷 사용 기록을 분석하여 고객이 조회하는 뉴스 기사의 이슈를 식별하고 다양한 이슈에 대한 고객의 관심을 계량화한 후, 이를 활용하여 고객의 카테고리별 재구매 여부를 예측하는 모델을 제안하고자 한다. 실제 웹 트랜잭션으로부터 도출된 인터넷 뉴스 조회 기록 및 쇼핑몰 구매 기록을 대상으로 실험을 수행한 결과, 고객의 과거 구매이력만을 활용한 카테고리 재구매 예측 모형에 비해 본 연구에서 제안한 모형, 즉 고객의 과거 구매이력과 관심 이슈를 모두 활용한 예측 모형의 정확도가 다소 우수한 것으로 나타났다.

유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법 (Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data)

  • 문지훈;박진웅;한상훈;황인준
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.954-965
    • /
    • 2017
  • 안정적인 전력 공급은 전력 인프라의 유지 보수 및 작동에 매우 중요하며, 이를 위해 정확한 전력 사용량 예측이 요구된다. 대학 캠퍼스는 전력 사용량이 많은 곳이며, 시간과 환경에 따른 전력 사용량 변화폭이 다양하다. 이러한 이유로, 전력계통의 효율적인 운영을 위해서는 전력 사용량을 정확하게 예측할 수 있는 모델이 요구된다. 기존의 시계열 예측 기법은 학습 시점과 예측 시점 간의 차이가 클수록 예측 구간이 넓어짐으로 예측 성능이 크게 떨어진다는 단점이 있다. 본 논문은 이를 보완하려는 방안으로, 먼저 의사결정나무를 이용해 날짜, 요일, 공휴일 여부, 학기 등을 고려하여 시계열 형태가 유사한 전력 데이터를 분류한다. 다음으로 분류된 데이터 셋에 각각의 자기회귀누적이동평균모형을 구성하여, 예측 시점에서 시계열 교차검증을 적용해 대학 캠퍼스의 일간 전력 사용량 예측 기법을 제안한다. 예측의 정확성을 평가하기 위해, 성능 평가 지표를 이용하여 제안한 기법의 타당성을 검증하였다.

데이터마이닝 기법을 이용한 건강보험공단의 수술 통계량 근사치 추정 -허니아 수술을 중심으로- (Estimation of a Nationwide Statistics of Hernia Operation Applying Data Mining Technique to the National Health Insurance Database)

  • 강성홍;서숙경;양영자;이애경;배종면
    • Journal of Preventive Medicine and Public Health
    • /
    • 제39권5호
    • /
    • pp.433-437
    • /
    • 2006
  • Objectives: The aim of this study is to develop a methodology for estimating a nationwide statistic for hernia operations with using the claim database of the Korea Health Insurance Cooperation (KHIC). Methods: According to the insurance claim procedures, the claim database was divided into the electronic data interchange database (EDI_DB) and the sheet database (Paper_DB). Although the EDI_DB has operation and management codes showing the facts and kinds of operations, the Paper_DB doesn't. Using the hernia matched management code in the EDI_DB, the cases of hernia surgery were extracted. For drawing the potential cases from the Paper_DB, which doesn't have the code, the predictive model was developed using the data mining technique called SEMMA. The claim sheets of the cases that showed a predictive probability of an operation over the threshold, as was decided by the ROC curve, were identified in order to get the positive predictive value as an index of usefulness for the predictive model. Results: Of the claim databases in 2004, 14,386 cases had hernia related management codes with using the EDI system. For fitting the models with applying the data mining technique, logistic regression was chosen rather than the neural network method or the decision tree method. From the Paper_DB, 1,019 cases were extracted as potential cases. Direct review of the sheets of the extracted cases showed that the positive predictive value was 95.3%. Conclusions: The results suggested that applying the data mining technique to the claim database in the KHIC for estimating the nationwide surgical statistics would be useful from the aspect of execution and cost-effectiveness.

딥러닝을 활용한 개인정보 처리방침 분석 기법 연구 (Privacy Policy Analysis Techniques Using Deep Learning)

  • 조용현;차영균
    • 정보보호학회논문지
    • /
    • 제30권2호
    • /
    • pp.305-312
    • /
    • 2020
  • 개인정보보호법에서는 정보 주체의 권리보장을 위해 개인정보보호 정책문서인 개인정보 처리방침을 공개하도록 규정하고 있고 공정거래위원회에서는 개인정보 처리방침을 약관으로 보고 약관규제법에 따라 불공정약관심사를 하고 있다. 그러나, 정보 주체는 개인정보 처리방침이 복잡하고 이해하기 어려워 읽지 않는 경향이 있다. 개인정보 처리방침의 내용을 간단하고 읽기 쉽게 한다면 온라인 거래에 참여할 확률이 증가하여 기업의 매출 증가에 기여하고, 사업자와 정보주체간의 정보 비대칭성 문제 해결에 기여할 것이다. 본 연구에서는 복잡한 개인정보 처리방침을 딥러닝을 이용하여 분석하여 정보주체로 하여금 가독성 높은 단순화된 개인정보처리 방침을 구현하기 위한 모델을 제시한다. 모델을 제시하기 위해 국내 258개 기업의 개인정보 처리방침을 데이터셋으로 구축하고 딥러닝 기술을 활용하여 분석하는 방안을 제안하였다.

차대차 교통사고에 대한 상해 심각도 예측 연구 (A Study on Injury Severity Prediction for Car-to-Car Traffic Accidents)

  • 고창완;김현민;정영선;김재희
    • 한국ITS학회 논문지
    • /
    • 제19권4호
    • /
    • pp.13-29
    • /
    • 2020
  • 자동차는 우리의 일상에 필수재가 된 지 오래지만 자동차 교통사고로 인한 사회적 비용이 국가 예산의 9%를 넘을 정도로 심각하여 이에 대한 국가적인 예방 및 대응 체계 구축이 매우 필요한 실정이다. 이에 본 연구에서는 빅데이터 분석 기법을 활용하여 차대차 교통사고의 상해 심각도를 정확히 예측할 수 있는 모형을 제시하고자 하였다. 이를 위해 과거 3년간의 전국교통사고 발생 데이터를 토대로, K-최근접 이웃, 로지스틱 회귀분석, 나이브베이즈, 의사결정나무, 앙상블 알고리즘을 적용하여 각 모델의 상해 심각도 분류의 성능을 비교 분석하였다. 특히 이 과정에서 각 상해 심각도 수준 간의 데이터 수에 차이가 있음에 주목하여 표본수가 많은 그룹에 대해서는 과소표본추출을 시행하는 등의 방법을 통해 분류 예측의 정확도를 높일 수 있었고, 분산 분석을 통해 모델의 유의성을 검증하였다.

데이터마이닝 모형을 활용한 호흡기질환의 주요인 선별 (Identification of major risk factors association with respiratory diseases by data mining)

  • 이제영;김현지
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.373-384
    • /
    • 2014
  • 데이터 마이닝이란 대량의 데이터나 복잡한 구조의 데이터들을 정교한 통계분석과 모델링 테크닉을 이용하여 정확히 식별되지 않는 패턴이나 자료간의 상관관계를 밝혀내어 여러 가지 결과를 예측해 내는 통계적 기법이다. 이러한 데이터 마이닝 기법은 금융, 통신, 유통, 의학 등 다양한 분야에 활용되는데, 본 연구에서는 의학 분야에 적용하여 호흡기질환에 영향을 끼치는 요인을 선별하였다. 분석은 2012년도 경상북도 지역사회건강조사에 참여한 사람 중 의사에게서 폐결핵, 천식, 알레르기성 비염을 진단받은 경험이 있는 호흡기질환군과 건강군으로 정리한 자료를 대상으로 하였다. 호흡기질환이 영향을 끼치는 주요인을 선별하기 위해 인공신경망, 로지스틱 회귀모형, 베이지안 네트워크, C5.0, CART 기법을 이용하였다. 공정한 모형 평가를 위해 전체 데이터를 훈련용 데이터와 검증용 데이터로 나누었고, 훈련용 데이터에서 설정된 모형을 검증용 데이터에 적용하여 정확도를 비교하였다. 그 결과 CART가 최적 모형으로 선정되었으며 CART의 의사결정나무를 통하여 우울감 인지 여부, 현재 흡연여부, 스트레스 인지 여부 순으로 호흡기질환에 영향을 주는 것으로 나타났다. 그리고 호흡기질환의 주요인들에 대한 오즈비를 구하여 개별적인 영향력에 대해서도 밝혔다.