• Title/Summary/Keyword: Decision-Tree-Model

Search Result 740, Processing Time 0.019 seconds

A Prediction Model for studying the Impact of Separated Families on Students using Decision Tree

  • Ourida Ben boubaker;Ines Hosni;Hala Elhadidy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.79-84
    • /
    • 2023
  • Social studies show that the number of separated families have lately increased due to different reasons. Despite the causes for family rift, many problems are resulted which affected the children physically and psychologically. This effect may cause them fail in their life especially at school. This paper focuses on the negative reaction of the parents' separation with other factors from the computer science prospective. Since the artificial intelligent field is the most common widespread in computer science, a predictive model is built to predict if a specific child whose parents separated, may complete the school successfully or fail to continue his education. This will be done using Decision Tree that have proved their effectiveness on the predication applications. As an experiment, a sample of individuals is randomly chosen and applied on our prediction model. As a result, this model shows that the separation may cause the child success at school if other factors are satisfied; the intelligent of the guardian, the relation between the parents after the separation, his age at the separation time, etc.

Collaborative Secure Decision Tree Training for Heart Disease Diagnosis in Internet of Medical Things

  • Gang Cheng;Hanlin Zhang;Jie Lin;Fanyu Kong;Leyun Yu
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.514-523
    • /
    • 2024
  • In the Internet of Medical Things, due to the sensitivity of medical information, data typically need to be retained locally. The training model of heart disease data can predict patients' physical health status effectively, thereby providing reliable disease information. It is crucial to make full use of multiple data sources in the Internet of Medical Things applications to improve model accuracy. As network communication speeds and computational capabilities continue to evolve, parties are storing data locally, and using privacy protection technology to exchange data in the communication process to construct models is receiving increasing attention. This shift toward secure and efficient data collaboration is expected to revolutionize computer modeling in the healthcare field by ensuring accuracy and privacy in the analysis of critical medical information. In this paper, we train and test a multiparty decision tree model for the Internet of Medical Things on a heart disease dataset to address the challenges associated with developing a practical and usable model while ensuring the protection of heart disease data. Experimental results demonstrate that the accuracy of our privacy protection method is as high as 93.24%, representing a difference of only 0.3% compared with a conventional plaintext algorithm.

Drivers Detour Decision Factor Analysis with Combined Method of Decision Tree and Neural Network Algorithm (의사결정나무와 신경망 모형 결합에 의한 운전자 우회결정요인 분석)

  • Kang, Jin-Woong;Kum, Ki-Jung;Son, Seung-Neo
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.167-176
    • /
    • 2011
  • This study's purpose is to analyse factors of determination about detouring for makinga standard model in regard of unfavorableness and uncertainty when unspecified individual recipients make a decision at the time of course detour. In order to achieve this, we surveyed SP investigation whether making a detour or not for drivers as a target who take a high way and National highway. Based on this result, we analysed detour determination factors of drivers, establishing a combination model of Decision Tree and Neural Network model. The result demonstrates the effected factors on drivers' detour determination are in ordering of the recognition of alternative routevs, reliable and frequency of using traffic information, frequency of transition routes and age. Moreover, from the outcome in comparison with an existing model and prediction through undistributed data, the rate of combination model 8.7% illustrates the most predictable way in contrast with logit model 12.8%, and Individual Model of Decision Tree 13.8% which are existed. This reveals that the analysis of drivers' detour determination factors is valid to apply. Hence, overall study considers as a practical foundation to make effective detour strategies for increasing the utility of route networking and dispersion in the volume of traffic from now on.

Prediction of Academic Performance of College Students with Bipolar Disorder using different Deep learning and Machine learning algorithms

  • Peerbasha, S.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.350-358
    • /
    • 2021
  • In modern years, the performance of the students is analysed with lot of difficulties, which is a very important problem in all the academic institutions. The main idea of this paper is to analyze and evaluate the academic performance of the college students with bipolar disorder by applying data mining classification algorithms using Jupiter Notebook, python tool. This tool has been generally used as a decision-making tool in terms of academic performance of the students. The various classifiers could be logistic regression, random forest classifier gini, random forest classifier entropy, decision tree classifier, K-Neighbours classifier, Ada Boost classifier, Extra Tree Classifier, GaussianNB, BernoulliNB are used. The results of such classification model deals with 13 measures like Accuracy, Precision, Recall, F1 Measure, Sensitivity, Specificity, R Squared, Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, TPR, TNR, FPR and FNR. Therefore, conclusion could be reached that the Decision Tree Classifier is better than that of different algorithms.

Remote Fault Diagnosis Method of Wind Power Generation Equipment Based on Internet of Things

  • Bing, Chen;Ding, Liu
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.822-829
    • /
    • 2022
  • According to existing study into the remote fault diagnosis procedure, the current diagnostic approach has an imperfect decision model, which only supports communication in a close distance. An Internet of Things (IoT)-based remote fault diagnostic approach for wind power equipment is created to address this issue and expand the communication distance of fault diagnosis. Specifically, a decision model for active power coordination is built with the mechanical energy storage of power generation equipment with a remote diagnosis mode set by decision tree algorithms. These models help calculate the failure frequency of bearings in power generation equipment, summarize the characteristics of failure types and detect the operation status of wind power equipment through IoT. In addition, they can also generate the point inspection data and evaluate the equipment status. The findings demonstrate that the average communication distances of the designed remote diagnosis method and the other two remote diagnosis methods are 587.46 m, 435.61 m, and 454.32 m, respectively, indicating its application value.

Using CART to Evaluate Performance of Tree Model (CART를 이용한 Tree Model의 성능평가)

  • Jung, Yong Gyu;Kwon, Na Yeon;Lee, Young Ho
    • Journal of Service Research and Studies
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Data analysis is the universal classification techniques, which requires a lot of effort. It can be easily analyzed to understand the results. Decision tree which is developed by Breiman can be the most representative methods. There are two core contents in decision tree. One of the core content is to divide dimensional space of the independent variables repeatedly, Another is pruning using the data for evaluation. In classification problem, the response variables are categorical variables. It should be repeatedly splitting the dimension of the variable space into a multidimensional rectangular non overlapping share. Where the continuous variables, binary, or a scale of sequences, etc. varies. In this paper, we obtain the coefficients of precision, reproducibility and accuracy of the classification tree to classify and evaluate the performance of the new cases, and through experiments to evaluate.

  • PDF

Development to Prediction Technique of Slope Hazards in Gneiss Area using Decision Tree Model (의사결정나무모형을 이용한 편마암 지역에서의 급경사지재해 예측기법 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2008
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in gneiss area, a prediction technique was developed by the use of a decision tree model, which is one of the statistical analysis methods. The slope hazards data of Seoul and Kyonggi Province, which were induced by heavy rainfall in 1998, were 104 sections in gneiss area. The number of data applied in developing prediction model was 61 sections except a vacant value. Among these data, the number of data occurred slope hazards was 34 sections and the number of data non-occurred slope hazards was 27 sections. The statistical analyses using the decision tree model were applied to chi-square statistics, gini index and entrophy index. As the results of analyses, a slope angle, a degree of saturation and an elevation were selected as the classification standard. The prediction model of decision tree using entrophy index is most likely accurate. The classification standard of the selected prediction model is composed of the slope angle, the degree of saturation and the elevation from the first choice stage. The classification standard values of the slope angle, the degree of saturation and elevation are $17.9^{\circ}$, 52.1% and 320 m, respectively.

Decision Tree Model for Predicting Hospice Palliative Care Use in Terminal Cancer Patients

  • Lee, Hee-Ja;Na, Im-Il;Kang, Kyung-Ah
    • Journal of Hospice and Palliative Care
    • /
    • v.24 no.3
    • /
    • pp.184-193
    • /
    • 2021
  • Purpose: This study attempted to develop clinical guidelines to help patients use hospice and palliative care (HPC) at an appropriate time after writing physician orders for life-sustaining treatment (POLST) by identifying the characteristics of HPC use of patients with terminal cancer. Methods: This retrospective study was conducted to understand the characteristics of HPC use of patients with terminal cancer through decision tree analysis. The participants were 394 terminal cancer patients who were hospitalized at a cancer-specialized hospital in Seoul, South Korea and wrote POLST from January 1, 2019 to March 31, 2021. Results: The predictive model for the characteristics of HPC use showed three main nodes (living together, pain control, and period to death after writing POLST). The decision tree analysis of HPC use by terminal cancer patients showed that the most likely group to use HPC use was terminal cancer patients who had a cohabitant, received pain control, and died 2 months or more after writing a POLST. The probability of HPC usage rate in this group was 87.5%. The next most likely group to use HPC had a cohabitant and received pain control; 64.8% of this group used HPC. Finally, 55.1% of participants who had a cohabitant used HPC, which was a significantly higher proportion than that of participants who did not have a cohabitant (1.7%). Conclusion: This study provides meaningful clinical evidence to help make decisions on HPC use more easily at an appropriate time.

An Analysis of the Determinants of Government-Funded Defense Companies using a Decision Tree (의사결정나무를 활용한 방산육성지원 수혜기업 결정요인 분석)

  • Gowoon Jeon;Seulah Baek;Jeonghwan Jeon;Donghee Yoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.80-93
    • /
    • 2024
  • This study attempted to analyze the factors that influence the participation of beneficiary companies in the government's defense industry promotion support project. To this end, experimental data were analyzed by constructing a prediction model consisting of highly important variables in beneficiary company decisions among various company information using the decision tree model, one of the data mining techniques. In addition, various rules were derived to determine the beneficiary companies of the government's support project using the analysis results expressed as decision trees. Three policy measures were presented based on the important rules that repeatedly appear in different predictive models to increase the effect of the government's industrial development. Using the analysis methods presented in this study and the determinants of the beneficiary companies of the government support project will help create a sustainable future defense industry growth environment.

Development of a model to analyze the relationship between smart pig-farm environmental data and daily weight increase based on decision tree (의사결정트리를 이용한 돈사 환경데이터와 일당증체 간의 연관성 분석 모델 개발)

  • Han, KangHwi;Lee, Woongsup;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2348-2354
    • /
    • 2016
  • In recent days, IoT (Internet of Things) technology has been widely used in the field of agriculture, which enables the collection of environmental data and biometric data into the database. The availability of big data on agriculture results in the increase of the machine learning based analysis. Through the analysis, it is possible to forecast agricultural production and the diseases of livestock, thus helping the efficient decision making in the management of smart farm. Herein, we use the environmental and biometric data of Smart Pig farm to derive the accurate relationship model between the environmental information and the daily weight increase of swine and verify the accuracy of the derived model. To this end, we applied the M5P tree algorithm of machine learning which reveals that the wind speed is the major factor which affects the daily weight increase of swine.