• 제목/요약/키워드: Decision tree algorithm

검색결과 452건 처리시간 0.024초

CRT 알고리즘을 이용한 우리나라 노인의 사회활동 영향요인 예측 모형 개발 (Development of Predictive Model of Social Activity for the Elderly in Korea using CRT Algorithm)

  • 변해원
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.243-248
    • /
    • 2018
  • 노년기의 사회참여는 사회적 상호작용의 기회를 제공하여 삶의 만족감을 고취시키기 때문에 성공적인 노화를 달성하기 위해서 중요하다. 이 연구는 우리나라 지역사회 노인을 대상으로 노년기 사회 활동의 관련요인과 사회 참여를 예측하는 통계적 분류 모형을 구축하였다. 분석 대상은 2015년도 지역사회 건강조사를 완료한 60세 이상 노인 1,864명(남 829명, 여 1,035명)이었다. 결과 변수는 지난 1달 간 사회 활동 경험(있음, 없음)으로 정의하였다. 예측모형은 Classification and Regression Trees(CRT) 알고리즘 기반 의사결정나무모형을 이용하여 구축하였다. 연구결과, 사회참여의 유의미한 분류 변수는 주관적 건강, 이웃과의 만남빈도, 친척과의 만남빈도, 배우자 동거여부이었고, 그 중에서도 가장 우선적으로 관여하는 예측 요인은 주관적 건강수준이었다. 본 연구의 결과를 기초로 도래하는 초고령사회의 성공적인 노화를 대비하기 위해서 노인의 사회 활동에 대한 사회적 관심과 지원이 요구된다.

데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구 (An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining)

  • 김미희;오하영;채기준
    • 한국통신학회논문지
    • /
    • 제31권2C호
    • /
    • pp.208-218
    • /
    • 2006
  • 본 논문에서는 최신의 공격 유형을 잘 분류해 내고, 기존 공격의 변형이나 새로운 공격에도 탐지 가능하도록 데이터 마이닝 기법을 이용한 공격 탐지 모델 생성 방법들을 소개하고, 다양한 실험을 통해 탐지율 및 탐지 시간 측면에서 이 모델들의 성능을 비교한다. 이러한 탐지 모델을 생성하는데 중요한 요소로 데이터, 속성, 탐지 알고리즘을 꼽을 수 있는데, 실제 네트워크에서 수집된 NetFlow 데이터와 대량의 KDD Cup 1999 데이터를 사용하였다. 또한 탐지 알고리즘으로서 단일 지도/비지도학습 데이터 마이닝 기법 및 결합된 방법을 이용하여 탐지 모델을 생성, 비교 실험하였다. 시험 결과, 결합된 지도학습 알고리즘을 사용한 경우 모델링 시간은 길었지만 가장 탐지율이 높았고, 모든 경우 탐지 시간이 1초 내외로 실시간 탐지 가능성을 입증할 수 있었다. 또한 새로운 공격에 대한 이상탐지 결과로도 92$\%$ 이상의 탐지율을 보임으로 탐지 가능성을 입증할 수 있었고, SOM 기법을 사용하는 경우에는 새로운 공격이 기존 어느 공격에 유사한 특성을 갖는지에 대한 부과적인 정보도 제공하였다.

IoT 기반 상황 별 작업 분류 알고리즘 (IoT based Situation-specific Task Classification Algorithm)

  • 정도형;김철희;이재승;이형선;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.613-614
    • /
    • 2017
  • 최근 가정 내부에 IoT(Internet of Things)를 적용시킨 홈 IoT의 자동화 관련 연구가 진행되고 있다. 그러나 기존 IoT 자동화 시스템은 기기 동작이 센서의 임계값만을 통해 진행되기 때문에 기기간 충돌 및 간섭이 발생할 수 있으며 기기의 오작동으로 인해 작업의 효율성이 낮은 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 상황 별 작업 분류 알고리즘을 제안한다. 센서의 임계값과 현재 날짜를 의사결정트리의 분류 값으로 활용하여 가정 내부 상황에 따른 작업을 분류하고 그에 해당하는 기기를 선정하여 작업을 진행한다. 이에 따라 사용자는 가정 내부 상황 변화에 유동적으로 변화하는 서비스를 제공받을 수 있으며 기기 간 충돌과 기기의 오작동이 감소함으로써 작업의 정확도가 증대될 것으로 사료된다.

  • PDF

딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구 (Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river)

  • 박정수
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

잡음과 스펙트럼 이동에 강인한 CNN 기반 라만 분광 알고리즘 (CNN based Raman Spectroscopy Algorithm That is Robust to Noise and Spectral Shift)

  • 박재현;유형근;이창식;장동의;박동조;남현우;박병황
    • 한국군사과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.264-271
    • /
    • 2021
  • Raman spectroscopy is an equipment that is widely used for classifying chemicals in chemical defense operations. However, the classification performance of Raman spectrum may deteriorate due to dark current noise, background noise, spectral shift by vibration of equipment, spectral shift by pressure change, etc. In this paper, we compare the classification accuracy of various machine learning algorithms including k-nearest neighbor, decision tree, linear discriminant analysis, linear support vector machine, nonlinear support vector machine, and convolutional neural network under noisy and spectral shifted conditions. Experimental results show that convolutional neural network maintains a high classification accuracy of over 95 % despite noise and spectral shift. This implies that convolutional neural network can be an ideal classification algorithm in a real combat situation where there is a lot of noise and spectral shift.

Detection of Depression Trends in Literary Cyber Writers Using Sentiment Analysis and Machine Learning

  • Faiza Nasir;Haseeb Ahmad;CM Nadeem Faisal;Qaisar Abbas;Mubarak Albathan;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.67-80
    • /
    • 2023
  • Rice is an important food crop for most of the population in Nowadays, psychologists consider social media an important tool to examine mental disorders. Among these disorders, depression is one of the most common yet least cured disease Since abundant of writers having extensive followers express their feelings on social media and depression is significantly increasing, thus, exploring the literary text shared on social media may provide multidimensional features of depressive behaviors: (1) Background: Several studies observed that depressive data contains certain language styles and self-expressing pronouns, but current study provides the evidence that posts appearing with self-expressing pronouns and depressive language styles contain high emotional temperatures. Therefore, the main objective of this study is to examine the literary cyber writers' posts for discovering the symptomatic signs of depression. For this purpose, our research emphases on extracting the data from writers' public social media pages, blogs, and communities; (3) Results: To examine the emotional temperatures and sentences usage between depressive and not depressive groups, we employed the SentiStrength algorithm as a psycholinguistic method, TF-IDF and N-Gram for ranked phrases extraction, and Latent Dirichlet Allocation for topic modelling of the extracted phrases. The results unearth the strong connection between depression and negative emotional temperatures in writer's posts. Moreover, we used Naïve Bayes, Support Vector Machines, Random Forest, and Decision Tree algorithms to validate the classification of depressive and not depressive in terms of sentences, phrases and topics. The results reveal that comparing with others, Support Vectors Machines algorithm validates the classification while attaining highest 79% f-score; (4) Conclusions: Experimental results show that the proposed system outperformed for detection of depression trends in literary cyber writers using sentiment analysis.

머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로 (A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university)

  • 김소현;조성현
    • 대한통합의학회지
    • /
    • 제12권2호
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.

재가장애인 사례관리의 욕구사정 정확도 향상을 위한 사정도구 개발과 욕구추출 알고리즘 과정 연구 - 데이터 마이닝 분석기법을 활용하여 - (Development of Needs Assessment tool and Extraction Algorithm Fitting for Individuals in Care Management for the disabled in Home)

  • 김영숙;정국인
    • 한국사회복지학
    • /
    • 제60권2호
    • /
    • pp.155-173
    • /
    • 2008
  • 본 연구는 지역사회 내에 거주하는 재가 장애인의 신체적, 심리적, 사회 환경적 상황을 종합적으로 평가하여 그에 적합한 서비스를 제공하기 위한 욕구 중심의 사정도구를 개발하고, 개발된 도구를 활용하여 재가 장애인 200명의 사정 데이터를 수집한 후 데이터마이닝의 의사결정 나무분석 기법을 활용하여 욕구에 적합한 서비스제공을 위한 욕구 추출 알고리즘을 구성하였다. 본 연구는 2006년 6월부터 10월까지 5개월간 이루어졌으며, 크게 사정도구 개발과 개발된 도구를 활용한 욕구추출 과정으로 나뉠 수 있다. 도구개발은 문헌고찰을 통하여 기본적인 틀을 구성하였고, 포커스집단과 전문가들을 통하여 사정도구의 주관적 호소와 욕구 문항을 개발하였으며, 도구의 타당도를 확인하기 위해 통계적인 검증과정을 거쳤다. 검증결과 본 도구는 <표 2>와 <표 3>의 결과처럼 타당도와 신뢰도를 확보하였으며, 이 도구를 활용하여 욕구추출 알고리즘 요약을 <표 5>와 같이 제시하였다. 본 연구의 결과로 제시한 사정도구와 알고리즘은 재가 장애인의 객관적 욕구를 사정하고 확인함으로써 체계적인 사례관리를 수행하는 자료로 활용될 수 있다.

  • PDF

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.

머신러닝기반 범죄발생 위험지역 예측 (Predicting Crime Risky Area Using Machine Learning)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.64-80
    • /
    • 2018
  • 우리나라의 시민들은 범죄에 대한 일반적인 사항만을 알 수 있을 뿐, 자신이 범죄위험에 얼마나 노출되어 있는지를 파악하기 어렵다. 경찰의 입장에서도 범죄발생 지역을 예측할 수 있다면 경찰력이 부족한 상황에서 효율성 있게 범죄에 대처 가능할 것이지만 아직 우리나라에서는 예측시스템이 없고, 관련 연구도 매우 부족한 실정이다. 이에 본 연구에서는 범죄발생 위험지역 예측 자동화 시스템 개발의 첫 번째 단계로 빅데이터로 구축 가능한 범죄정보와 도시지역 자료를 바탕으로 머신러닝 방식을 통해 한국형 범죄발생 위험지역 예측 모형을 개발하고자 한다. 또한 시나리오를 가정하여 범죄발생 확률을 지도로 시각화함으로써 사용자의 이해도를 높이도록 하였다. 선행 연구 및 사례에서 범죄발생에 영향을 미치는 요인 중 빅데이터로 구축 가능한 범죄정보, 날씨정보(기온, 강수량, 풍속, 습도, 일조, 일사, 적설, 전운량), 지역정보(평균 건폐율, 평균 용적율, 평균 높이, 총 건축물수, 평균 공시지가, 평균 주거용도면적, 평균 지상층수)를 머신러닝에 활용할 수 있도록 데이터를 사전 처리하였다. 머신러닝 알고리즘으로서 지도학습 모형 중 다양한 분야에서 활용되며 정확도가 높다고 알려진 의사결정나무모형, 랜덤포레스트모형, Support Vector Machine(SVM)모형을 활용하여 범죄 예측 모형을 구축하고 비교 분석하였다. 그 결과 평균 제곱근 오차(Root Mean Square Error, RMSE)가 낮아 예측력이 높은 의사결정나무모형을 최적모형으로 선정하였다. 이를 바탕으로 가장 빈번하게 발생하는 절도와 폭력범죄를 대상으로 시나리오를 작성하여 범죄 발생 위험지역을 예측한 결과, 사례도시 J시는 위험지역이 3가지 패턴으로 발생하는 것으로 나타났으며, 각각 발생확률을 3 등급으로 구분하여 $250{\times}250m$ 단위의 지도형태로 시각화할 수 있었다. 본 연구는 향후 자동화 시스템으로 개발하여 시시각각으로 변하는 도시 상황에 따라 실시간으로 예측 결과를 시각화하여 제공함으로써 보다 범죄로부터 안전한 도시환경 조성에 기여하고자 한다.