• 제목/요약/키워드: Decision tree algorithm

검색결과 452건 처리시간 0.025초

Decision Tree with Optimal Feature Selection for Bearing Fault Detection

  • Nguyen, Ngoc-Tu;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.101-107
    • /
    • 2008
  • In this paper, the features extracted from vibration time signals are used to detect the bearing fault condition. The decision tree is applied to diagnose the bearing status, which has the benefits of being an expert system that is based on knowledge history and is simple to understand. This paper also suggests a genetic algorithm (GA) as a method to reduce the number of features. In order to show the potentials of this method in both aspects of accuracy and simplicity, the reduced-feature decision tree is compared with the non reduced-feature decision tree and the PCA-based decision tree.

결정 트리 모델링에 의한 한국어 문맥 종속 음소 분류 연구 (A Study on the Categorization of Context-dependent Phoneme using Decision Tree Modeling)

  • 이선정
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권2호
    • /
    • pp.195-202
    • /
    • 2001
  • 본 논문에서는 한국어 음소가 좌, 우 음소에 따라 발음 방식이 달라질 때 매 음소를 모델링 하는 방법에 관한 연구를 수행한다. 이를 위해 유니트 감소 알고리즘과 결정 트리(Decision Tree)를 사용하는 방법을 사용하여 비교 연구한다. 유니트 감소 알고리즘은 통계적 특성만을 이용한 알고리즘이며 결정 트리 모델링 방식은 한국어 음운정보와 통계적 정보를 이용하여 문맥종속 음소를 분류하는 방식이다. 특히 본 논문에서는 결정 트리를 사용하여 문맥종속 음소를 분류하는 것에 대하여 상세히 기술한다. 마지막으로 결정 트리를 사용하여 분류된 문맥종속 음소의 성능을 실험하였다.

  • PDF

Prediction of the number of public bicycle rental in Seoul using Boosted Decision Tree Regression Algorithm

  • KIM, Hyun-Jun;KIM, Hyun-Ki
    • 한국인공지능학회지
    • /
    • 제10권1호
    • /
    • pp.9-14
    • /
    • 2022
  • The demand for public bicycles operated by the Seoul Metropolitan Government is increasing every year. The size of the Seoul public bicycle project, which first started with about 5,600 units, increased to 3,7500 units as of September 2021, and the number of members is also increasing every year. However, as the size of the project grows, excessive budget spending and deficit problems are emerging for public bicycle projects, and new bicycles, rental office costs, and bicycle maintenance costs are blamed for the deficit. In this paper, the Azure Machine Learning Studio program and the Boosted Decision Tree Regression technique are used to predict the number of public bicycle rental over environmental factors and time. Predicted results it was confirmed that the demand for public bicycles was high in the season except for winter, and the demand for public bicycles was the highest at 6 p.m. In addition, in this paper compare four additional regression algorithms in addition to the Boosted Decision Tree Regression algorithm to measure algorithm performance. The results showed high accuracy in the order of the First Boosted Decision Tree Regression Algorithm (0.878802), second Decision Forest Regression (0.838232), third Poison Regression (0.62699), and fourth Linear Regression (0.618773). Based on these predictions, it is expected that more public bicycles will be placed at rental stations near public transportation to meet the growing demand for commuting hours and that more bicycles will be placed in rental stations in summer than winter and the life of bicycles can be extended in winter.

유전 알고리즘을 이용한 이진 결정 트리의 설계와 영문자 인식에의 응용 (A design of binary decision tree using genetic algorithms and its application to the alphabetic charcter)

  • 정순원;김경민;박귀태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.218-223
    • /
    • 1995
  • A new design scheme of a binary decision tree is proposed. In this scheme a binary decision tree is constructed by using genetic algorithm and FCM algorithm. At each node optimal or near-optimal feature or feature subset among all the available features is selected based on fitness function in genetic algorithm which is inversely proportional to classification error, balance between cluster, number of feature used. The proposed design scheme is applied to the handwtitten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

러프셋 이론과 개체 관계 비교를 통한 의사결정나무 구성 (A New Decision Tree Algorithm Based on Rough Set and Entity Relationship)

  • 한상욱;김재련
    • 대한산업공학회지
    • /
    • 제33권2호
    • /
    • pp.183-190
    • /
    • 2007
  • We present a new decision tree classification algorithm using rough set theory that can induce classification rules, the construction of which is based on core attributes and relationship between objects. Although decision trees have been widely used in machine learning and artificial intelligence, little research has focused on improving classification quality. We propose a new decision tree construction algorithm that can be simplified and provides an improved classification quality. We also compare the new algorithm with the ID3 algorithm in terms of the number of rules.

Improved Decision Tree Classification (IDT) Algorithm For Social Media Data

  • Anu Sharma;M.K Sharma;R.K Dwivedi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.83-88
    • /
    • 2024
  • In this paper we used classification algorithms on social networking. We are proposing, a new classification algorithm called the improved Decision Tree (IDT). Our model provides better classification accuracy than the existing systems for classifying the social network data. Here we examined the performance of some familiar classification algorithms regarding their accuracy with our proposed algorithm. We used Support Vector Machines, Naïve Bayes, k-Nearest Neighbors, decision tree in our research and performed analyses on social media dataset. Matlab is used for performing experiments. The result shows that the proposed algorithm achieves the best results with an accuracy of 84.66%.

의사결정트리의 분류 정확도 향상 (Classification Accuracy Improvement for Decision Tree)

  • 메하리 마르타 레제네;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

증분 의사결정 트리 구축을 위한 연속형 속성의 다구간 이산화 (Multi-Interval Discretization of Continuous-Valued Attributes for Constructing Incremental Decision Tree)

  • 백준걸;김창욱;김성식
    • 대한산업공학회지
    • /
    • 제27권4호
    • /
    • pp.394-405
    • /
    • 2001
  • Since most real-world application data involve continuous-valued attributes, properly addressing the discretization process for constructing a decision tree is an important problem. A continuous-valued attribute is typically discretized during decision tree generation by partitioning its range into two intervals recursively. In this paper, by removing the restriction to the binary discretization, we present a hybrid multi-interval discretization algorithm for discretizing the range of continuous-valued attribute into multiple intervals. On the basis of experiment using semiconductor etching machine, it has been verified that our discretization algorithm constructs a more efficient incremental decision tree compared to previously proposed discretization algorithms.

  • PDF

Hybridized Decision Tree methods for Detecting Generic Attack on Ciphertext

  • Alsariera, Yazan Ahmad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.56-62
    • /
    • 2021
  • The surge in generic attacks execution against cipher text on the computer network has led to the continuous advancement of the mechanisms to protect information integrity and confidentiality. The implementation of explicit decision tree machine learning algorithm is reported to accurately classifier generic attacks better than some multi-classification algorithms as the multi-classification method suffers from detection oversight. However, there is a need to improve the accuracy and reduce the false alarm rate. Therefore, this study aims to improve generic attack classification by implementing two hybridized decision tree algorithms namely Naïve Bayes Decision tree (NBTree) and Logistic Model tree (LMT). The proposed hybridized methods were developed using the 10-fold cross-validation technique to avoid overfitting. The generic attack detector produced a 99.8% accuracy, an FPR score of 0.002 and an MCC score of 0.995. The performances of the proposed methods were better than the existing decision tree method. Similarly, the proposed method outperformed multi-classification methods for detecting generic attacks. Hence, it is recommended to implement hybridized decision tree method for detecting generic attacks on a computer network.

Effective Acoustic Model Clustering via Decision Tree with Supervised Decision Tree Learning

  • Park, Jun-Ho;Ko, Han-Seok
    • 음성과학
    • /
    • 제10권1호
    • /
    • pp.71-84
    • /
    • 2003
  • In the acoustic modeling for large vocabulary speech recognition, a sparse data problem caused by a huge number of context-dependent (CD) models usually leads the estimated models to being unreliable. In this paper, we develop a new clustering method based on the C45 decision-tree learning algorithm that effectively encapsulates the CD modeling. The proposed scheme essentially constructs a supervised decision rule and applies over the pre-clustered triphones using the C45 algorithm, which is known to effectively search through the attributes of the training instances and extract the attribute that best separates the given examples. In particular, the data driven method is used as a clustering algorithm while its result is used as the learning target of the C45 algorithm. This scheme has been shown to be effective particularly over the database of low unknown-context ratio in terms of recognition performance. For speaker-independent, task-independent continuous speech recognition task, the proposed method reduced the percent accuracy WER by 3.93% compared to the existing rule-based methods.

  • PDF