• 제목/요약/키워드: Decision Tree analysis

검색결과 736건 처리시간 0.04초

재가노인 사례관리의 욕구사정 정확도 향상을 위한 욕구추출 알고리즘 개발 - 데이터 마이닝 분석기법을 활용하여 - (Development of Needs Extraction Algorithm Fitting for Individuals in Care Management for the Elderly in Home)

  • 김영숙;정국인;박소라
    • 한국사회복지학
    • /
    • 제60권1호
    • /
    • pp.187-209
    • /
    • 2008
  • 본 연구자들은 재가노인의 사례관리 과정에서 가장 핵심적인 요소가 되는 욕구 중심의 통합적 사정을 위한 28개의 욕구가 포함된 사정도구를 개발하였으며, 그 후속 연구로 개발된 욕구사정도구를 활용해 전국 노인복지관 협회 산하 120개 기관의 재가 노인 676명의 사정 데이터를 수집하고 데이터마이닝의 의사결정 나무분석 기법을 활용하여 욕구에 적합한 사회복지 서비스를 제공하기 위한 욕구추출 알고리즘을 개발하였다. 본 연구를 통해 재가노인의 욕구 28개에 대한 욕구추출 알고리즘은 <표3>에 요약하였다. 욕구 8번 "외출 시 도움을 원한다."의 의사결정모형을 예로 들면, 호소 23번을 주요 변인으로 외부이동 도움을 요청할 경우 80.3%와 요청하지 않을 경우 11.4%로 구분되었다. 이용자가 외부 이동에 대한 호소가 있고, 수발자가 있는 경우 87.9%로 욕구가 증가하였지만, 수발자가 없는 이용자의 경우 47.4%로 감소하였다. 노인이 외부이동 지원에 대한 요청과 수발자가 있으며, 청소하기의 완전도움이 필요한 경우, 외부이동 도움에 대한 욕구는 94.2%로 나타났다. 그러나 이용자가 외부이동의 도움을 요청하지 않더라도, ADL의 목욕하기에 완전도움으로 응답한 경우 외출도움의 욕구는 11.4%에서 80.0%로 급격히 증가하는 것을 확인할 수 있다. 그러나 ADL 목욕하기의 기능이 부분도움 또는 완전자립의 경우 외출도움이 필요하다고 분류될 가능성은 7.7%로 낮게 나타났다. 위와 같은 의사결정모형은 최대 나무 깊이는 5수준을 정지규칙으로 하여, 부모마디와 자식마디의 사례 수를 각각 50과 25로 지정하였다. 이를 통해 "외출 시 도움을 원한다"라는 욕구의 경우 182.13%의 효과적인 의사결정을 하고 있다. 본 연구의 결과로 제시한 알고리즘은 재가노인의 욕구를 추출함에 있어서 체계적이고 과학적인 기초자료로 활용될 수 있다.

  • PDF

이질성 학습을 통한 문서 분류의 정확성 향상 기법 (Improving the Accuracy of Document Classification by Learning Heterogeneity)

  • 윌리엄;현윤진;김남규
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.21-44
    • /
    • 2018
  • 최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.

회귀나무를 이용한 기업경기실사지수의 영향요인 분석 (The Analysis of Factors which Affect Business Survey Index Using Regression Trees)

  • 장영재
    • 응용통계연구
    • /
    • 제23권1호
    • /
    • pp.63-71
    • /
    • 2010
  • 기업가들은 일반적으로 기업의 성장을 위하여 국내외 경제동향에 대하여 면밀한 분석과 판단 및 예측을 하고 기업의 경영 활동에 반영한다. 기업가들의 이와 같은 종합적인 판단, 예측, 계획 등은 생산, 투자, 고용 등 기업의 경제활동에 영향을 미치게 되며, 국민경제 전체의 경제활동 수준이라 할 수 있는 경기에도 큰 영향을 미치게 된다. 기업경기 실사지수(Business Survey Index; BSI)는 이러한 기업가의 주관적이고 심리적인 요인에 대한 정보를 수집하여 경기분석에 활용하고자 하는 필요성에 의해 작성되었다. 기업경기실사지수는 과거 외환위기를 전후한 경기변동기에서 경제예측을 위한 단기시계열 모형의 매우 유용한 변수로 이용되었다. 최근의 금융위기는 과거 외환위기 당시와 유사한 급격한 경기변동올 수반하연서 기업정기실사지수의 경제예측변수로서의 중요성을 재차 부각시졌다. 본고에서는 이와 같이 유용성이 높아지고 있는 경제심리지표로서 기업경기실사지수의 의미에 대해 개괄하고 동 지수에 영향을 미치고 있는 요인에는 어떠한 것들이 있는지 살펴보았다. 분석을 위해 GUIDE 회귀나무 알고리즘을 이용하였으며, 분석한 결과 다양한 경제변수틀 중 제조업 가동률 및 소비재 판매액 등 기업의 활동과 직결된 지표와 더불어 kospi와 환율 등 금융시장의 안정성과 관련된 지표도 경제심리에 영향을 미치는 변수로 나타났다.

머신러닝 기반 금속외관 결함 검출 비교 분석 (Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection)

  • 이세훈;강성환;신요섭;최오규;김시종;강재모
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.834-841
    • /
    • 2022
  • 최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.

빅데이터 검색 정확도에 미치는 다양한 측정 방법 기반 검색 기법의 효과 (Impact of Diverse Document-evaluation Measure-based Searching Methods in Big Data Search Accuracy)

  • 김지영;한다현;김종권
    • 정보과학회 논문지
    • /
    • 제44권5호
    • /
    • pp.553-558
    • /
    • 2017
  • 빅데이터의 공급이 늘어남에 따라, 이로부터 유용한 정보를 추출해내기 위한 학계와 업계의 연구가 활발히 진행 되고 있다. 특히 분석한 정보의 특징과 함께, 정보 검색 시 검색자의 의도를 함께 반영하여 정보를 여과해 주는 것이 대부분의 연구의 최종 목표이다. 정확하게 분석된 자료는 기업이 제공하는 서비스에 대한 사용자의 충성도를 높여주고, 사용자 스스로 보다 효율적이고 효과적으로 정보를 이용할 수 있게 된다. 본 논문에서는 가장 높은 빈도로 사용되는 검색 분야인 기사를 검색하는 경우의 정확도를 높이기 위해, 관련 데이터를 TF-IDF, 결정 트리, 코사인 유사도, 단순 베이지안 분류기 등의 다양한 측도방법으로 평가해 보고, 이를 분석하였다. 또한, 분석 결과를 바탕으로 가장 적합한 측도 방법을 제안한다.

고객세분화를 통한 지방의료원의 의료서비스 전문화 전략 (Medical Services Specialization strategies of the Regional Public Hospital through Customer Segmentation)

  • 이진우
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4641-4650
    • /
    • 2015
  • 본 연구는 지방의료원의 고객세분화를 통하여 향후 전문화된 의료기관으로 진료전문성을 강화하여 경쟁력을 확보할 수 있는 진료전문화 전략을 제시하는데 목적이 있다. 조사기간은 2013년 1월부터 12월까지 입원한 환자 26,658명을 연구대상을 선정하였다. 분석방법은 군집분석과 의사결정나무분석을 이용하였다. 결론을 보면, 성별은 여자, 연령은 60세 이상, 질환별로는 근 골격계 및 결합조직의 질환이 충성고객으로 선정되었다. 이들은 지방의료원의 고객관리측면에서 향후 구전의 효과가 높은 고객 군으로 금전적인 소비규모가 높은 점을 고려하여 이들에게 제공된 의료서비스에 대한 모니터링과 커뮤니케이션을 통해 지속적인 관계를 유지하는 것이 중요하다. 앞으로 전문 분야의 전문의와 전문적 시설 확보 등의 적합한 조직구조와 환경을 갖추는 것이 중요하며, 지역 내 개원의, 유관기관간의 전략적 제휴 통한 진료협력 및 의뢰, 의료서비스 범위의 집중화가 필요하다.

ITS : 지능적 Tissue Mineral Analysis 의료 정보 시스템 (ITS : Intelligent Tissue Mineral Analysis Medical Information System)

  • 조영임
    • 한국지능시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.257-263
    • /
    • 2005
  • 현재 국내에서는 TMA(Tissue Mineral Analysis) 결과를 독자적이며 전문적으로 해석할 수 있는 의료 정보 데이터베이스가 없을 뿐 아니라, TMA 관련 데이터베이스가 있다 하더라도 의료기관에서 사용하기 어려운 매우 낮은 수준이므로 양질의 의료서비스를 제공하기 어려운 실정이다. 또한 국내에서 주로 사용되는 TMA 방법은 미국에 의뢰한 후 보내온 분석결과에 의존하게 되는데, 이때의 결과는 서구식 생활패턴에서 비롯된 데이터베이스에 의해 분석된 것이므로 동양인의 경우 특히 검사결과의 신뢰성 문제가 발생하게 된다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 국내 임상자료를 바탕으로 TMA 관련 국내 최초 지능적 의료정보시스템(ITS: Intelligent TMA Information System)을 개발하였다. ITS는 TMA 자료를 다단계 통계분석 방법에 의한 결성트리 분류기를 이용하여 분류하고 다중 퍼지 규칙베이스를 구축하여 복잡한 자료론 추론하도록 구축하였다.

위계적 선형모형을 이용한 강의평가 결정요인 분석 (Determinants of student course evaluation using hierarchical linear model)

  • 조장식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1285-1296
    • /
    • 2013
  • 강의평가 결과에 영향을 미치는 특성변수로는 교과목 수준의 다양한 강좌특성 변수들과 수강생 수준의 다양한 인적특성 변수들이 있다. 특정 수강생은 다수의 교과목을 이수하기 때문에 다수의 교과목들은 동일한 수강생 안에 속하게 됨으로써 공유되는 특성이 있게 된다. 즉 강의평가 결과는 교과목 수준의 강좌특성 (1-수준)과 수강생 수준의 인적특성 (2-수준)에 의해 영향을 받는 다층구조 (multilevel)를 가지게 되며, 위계적 자료 특성을 가지는 복수의 분석단위의 구조가 된다. 따라서 전통적인 회귀분석에서와 같이 개별 교과목들이 독립이라는 가정을 할 수 없게 된다. 본 논문에서는 강의평가결과에 영향을 미치는 다층구조의 특성을 가진 변수들의 영향력을 보다 타당하게 분석하기 위한 방법으로 위계선형모형 (HLM; hierarchical linear model)을 이용하였다. 분석결과는 다음과 같다. 먼저 교과목 수준의 특성변수들 중에 강좌규모, 개설학년, 담당교수의 전임여부, 해당 교과목의 총 평균평점, 원어강좌 여부가 통계적으로 유의하게 강의평가 결과에 영향을 미친 것으로 나타났다. 또한 수강생 수준의 인적특성 변수들 중에는 성별, 학과계열, 대입당시 전형방법, 평균평점 등이 유의하게 강의평가 결과에 영향을 미친 것으로 나타났다.

웹 기반의 도시철도 전문가시스템 개발에 관한 연구 (A Study on the Development of Web-based Expert System for Urban Transit)

  • 김현준;배철호;김성빈;이호용;김문현;서명원
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.163-170
    • /
    • 2005
  • Urban transit is a complex system that is combined electrically and mechanically, it is necessary to construct maintenance system for securing safety accompanying high-speed driving and maintaining promptly. Expert system is a computer program which uses numerical or non-numerical domain-specific knowledge to solve problems. In this research, we intend to develop the expert system which diagnose failure causes quickly and display measures. For the development of expert system, standardization of failure code classification system and creation of BOM(Bill Of Materials) have been first performed. Through the analysis of failure history and maintenance manuals, knowledge base has been constructed. Also, for retrieving the procedure of failure diagnosis and repair linking with the knowledge base, we have built RBR(Rule Based Reasoning) engine by pattern matching technique and CBR(Case Based Reasoning) engine by similarity search method. This system has been developed based on web to maximize the accessibility.

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • 한국IT서비스학회지
    • /
    • 제16권3호
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.