• Title/Summary/Keyword: Decision Tree Regression

Search Result 328, Processing Time 0.024 seconds

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

An Analysis for Price Determinants of Small and Medium-sized Office Buildings Using Data Mining Method in Gangnam-gu (데이터마이닝기법을 활용한 강남구 중소형 오피스빌딩의 매매가격 결정요인 분석)

  • Mun, Keun-Sik;Choi, Jae-Gyu;Lee, Hyun-seok
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.414-427
    • /
    • 2015
  • Most Studies for office market have focused on large-scale office buildings. There is, if any, a little research for small and medium-sized office buildings due to the lack of data. This study uses the self-searched and established 1,056 data in Gangnam-Gu, and estimates the data by not only linear regression model, but also data mining methods. The results provide investors with various information of price determinants, for small and medium-sized office buildings, comparing with large-scale office buildings. The important variables are street frontage condition, zoning of commercial area, distance to subway station, and so on.

A Target Selection Model for the Counseling Services in Long-Term Care Insurance (노인장기요양보험 이용지원 상담 대상자 선정모형 개발)

  • Han, Eun-Jeong;Kim, Dong-Geon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1063-1073
    • /
    • 2015
  • In the long-term care insurance (LTCI) system, National Health Insurance Service (NHIS) provide counseling services for beneficiaries and their family caregivers, which help them use LTC services appropriately. The purpose of this study was to develop a Target Selection Model for the Counseling Services based on needs of beneficiaries and their family caregivers. To develope models, we used data set of total 2,000 beneficiaries and family caregivers who have used the long-term care services in their home in March 2013 and completed questionnaires. The Target Selection Model was established through various data-mining models such as logistic regression, gradient boosting, Lasso, decision-tree model, Ensemble, and Neural network. Lasso model was selected as the final model because of the stability, high performance and availability. Our results might improve the satisfaction and the efficiency for the NHIS counseling services.

Estimation of a Nationwide Statistics of Hernia Operation Applying Data Mining Technique to the National Health Insurance Database (데이터마이닝 기법을 이용한 건강보험공단의 수술 통계량 근사치 추정 -허니아 수술을 중심으로-)

  • Kang, Sung-Hong;Seo, Seok-Kyung;Yang, Yeong-Ja;Lee, Ae-Kyung;Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.5
    • /
    • pp.433-437
    • /
    • 2006
  • Objectives: The aim of this study is to develop a methodology for estimating a nationwide statistic for hernia operations with using the claim database of the Korea Health Insurance Cooperation (KHIC). Methods: According to the insurance claim procedures, the claim database was divided into the electronic data interchange database (EDI_DB) and the sheet database (Paper_DB). Although the EDI_DB has operation and management codes showing the facts and kinds of operations, the Paper_DB doesn't. Using the hernia matched management code in the EDI_DB, the cases of hernia surgery were extracted. For drawing the potential cases from the Paper_DB, which doesn't have the code, the predictive model was developed using the data mining technique called SEMMA. The claim sheets of the cases that showed a predictive probability of an operation over the threshold, as was decided by the ROC curve, were identified in order to get the positive predictive value as an index of usefulness for the predictive model. Results: Of the claim databases in 2004, 14,386 cases had hernia related management codes with using the EDI system. For fitting the models with applying the data mining technique, logistic regression was chosen rather than the neural network method or the decision tree method. From the Paper_DB, 1,019 cases were extracted as potential cases. Direct review of the sheets of the extracted cases showed that the positive predictive value was 95.3%. Conclusions: The results suggested that applying the data mining technique to the claim database in the KHIC for estimating the nationwide surgical statistics would be useful from the aspect of execution and cost-effectiveness.

A Study on the Idol Survivability Prediction Using Machine Learning Techniques : Focused on the Industrial Competitiveness (머신러닝 기법을 활용한 아이돌 생존 가능성 예측 연구 : 산업 경쟁력 증진을 중심으로)

  • Kim, Seul-ah;Ahn, Ju Hyuk;Cui, Fuquan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.291-302
    • /
    • 2020
  • Korean popular music industry, which is lead by "Idol group", has forsaken their fandom all over the world. Therefore, idol groups has become not only an artist but also the most influential people in the Korean economy. A global idol group with a strong fandom can earn more than a trillion-dollar by attracting their global fan's interest in Korea. In other words, it is considerably important to carry the idol to a successful conclusion. This study tries to expect whether the idols can be survived or not at a certain point after their debut by ANN, Decision Tree, Random Forest. We decide that certain point as the three-year and eight-year after their debut, because it is their break-even point year and the year after their average renewal of the contract. In addition, this study also explains which feature is the most important to their survival by feature importance and Logistic regression. In conclusion, features like the number of idol competitors, the number of debut members and the number of the genre are significant. These results shed light on the efficient management of K-Pop idol to improve industrial competitiveness.

A Study on Injury Severity Prediction for Car-to-Car Traffic Accidents (차대차 교통사고에 대한 상해 심각도 예측 연구)

  • Ko, Changwan;Kim, Hyeonmin;Jeong, Young-Seon;Kim, Jaehee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.13-29
    • /
    • 2020
  • Automobiles have long been an essential part of daily life, but the social costs of car traffic accidents exceed 9% of the national budget of Korea. Hence, it is necessary to establish prevention and response system for car traffic accidents. In order to present a model that can classify and predict the degree of injury in car traffic accidents, we used big data analysis techniques of K-nearest neighbor, logistic regression analysis, naive bayes classifier, decision tree, and ensemble algorithm. The performances of the models were analyzed by using the data on the nationwide traffic accidents over the past three years. In particular, considering the difference in the number of data among the respective injury severity levels, we used down-sampling methods for the group with a large number of samples to enhance the accuracy of the classification of the models and then verified the statistical significance of the models using ANOVA.

Analysis and Prediction of Bicycle Traffic Accidents in Korea (자전거 교통 사고 현황 및 예측 분석)

  • Choi, Seunghee;Lee, Goo Yeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.89-96
    • /
    • 2016
  • According to the promoting policy for bicycle riding, the bicycle road infrastructure in Korea has been widely established. As the number of bicycle rider increases, bicycle traffic accidents also increase year after year. In this paper, we analyze bicycle traffic accident data from 2007 to 2014 which is provided by Road Traffic Authority and present statistical results of bicycle traffic accidents. And also regression analysis is applied to predict the number of daily traffic accidents in Seoul using ASOS(Automated Synoptic Observing System) climate data observed in the Seoul sector which are provided by Korea Meteorological Administration. In addition, decision tree analysis techniques are used to forecast the level of traffic accidents severity. In the analytic results of this research, we expect that it will be helpful to establish the collective policy of bicycle accident data and protective strategy in order to reduce the number of bicycle accidents.

Identification of major risk factors association with respiratory diseases by data mining (데이터마이닝 모형을 활용한 호흡기질환의 주요인 선별)

  • Lee, Jea-Young;Kim, Hyun-Ji
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.373-384
    • /
    • 2014
  • Data mining is to clarify pattern or correlation of mass data of complicated structure and to predict the diverse outcomes. This technique is used in the fields of finance, telecommunication, circulation, medicine and so on. In this paper, we selected risk factors of respiratory diseases in the field of medicine. The data we used was divided into respiratory diseases group and health group from the Gyeongsangbuk-do database of Community Health Survey conducted in 2012. In order to select major risk factors, we applied data mining techniques such as neural network, logistic regression, Bayesian network, C5.0 and CART. We divided total data into training and testing data, and applied model which was designed by training data to testing data. By the comparison of prediction accuracy, CART was identified as best model. Depression, smoking and stress were proved as the major risk factors of respiratory disease.

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

Terminology Recognition System based on Machine Learning for Scientific Document Analysis (과학 기술 문헌 분석을 위한 기계학습 기반 범용 전문용어 인식 시스템)

  • Choi, Yun-Soo;Song, Sa-Kwang;Chun, Hong-Woo;Jeong, Chang-Hoo;Choi, Sung-Pil
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.329-338
    • /
    • 2011
  • Terminology recognition system which is a preceding research for text mining, information extraction, information retrieval, semantic web, and question-answering has been intensively studied in limited range of domains, especially in bio-medical domain. We propose a domain independent terminology recognition system based on machine learning method using dictionary, syntactic features, and Web search results, since the previous works revealed limitation on applying their approaches to general domain because their resources were domain specific. We achieved F-score 80.8 and 6.5% improvement after comparing the proposed approach with the related approach, C-value, which has been widely used and is based on local domain frequencies. In the second experiment with various combinations of unithood features, the method combined with NGD(Normalized Google Distance) showed the best performance of 81.8 on F-score. We applied three machine learning methods such as Logistic regression, C4.5, and SVMs, and got the best score from the decision tree method, C4.5.