• Title/Summary/Keyword: Decision Tree Regression

Search Result 328, Processing Time 0.023 seconds

Comparison of the Prediction Model of Adolescents' Suicide Attempt Using Logistic Regression and Decision Tree: Secondary Data Analysis of the 2019 Youth Health Risk Behavior Web-Based Survey (로지스틱 회귀모형과 의사결정 나무모형을 활용한 청소년 자살 시도 예측모형 비교: 2019 청소년 건강행태 온라인조사를 이용한 2차 자료분석)

  • Lee, Yoonju;Kim, Heejin;Lee, Yesul;Jeong, Hyesun
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • Purpose: The purpose of this study was to develop and compare the prediction model for suicide attempts by Korean adolescents using logistic regression and decision tree analysis. Methods: This study utilized secondary data drawn from the 2019 Youth Health Risk Behavior web-based survey. A total of 20 items were selected as the explanatory variables (5 of sociodemographic characteristics, 10 of health-related behaviors, and 5 of psychosocial characteristics). For data analysis, descriptive statistics and logistic regression with complex samples and decision tree analysis were performed using IBM SPSS ver. 25.0 and Stata ver. 16.0. Results: A total of 1,731 participants (3.0%) out of 57,303 responded that they had attempted suicide. The most significant predictors of suicide attempts as determined using the logistic regression model were experience of sadness and hopelessness, substance abuse, and violent victimization. Girls who have experience of sadness and hopelessness, and experience of substance abuse have been identified as the most vulnerable group in suicide attempts in the decision tree model. Conclusion: Experiences of sadness and hopelessness, experiences of substance abuse, and experiences of violent victimization are the common major predictors of suicide attempts in both logistic regression and decision tree models, and the predict rates of both models were similar. We suggest to provide programs considering combination of high-risk predictors for adolescents to prevent suicide attempt.

A customer credit Prediction Researched to Improve Credit Stability based on Artificial Intelligence

  • MUN, Ji-Hui;JUNG, Sang Woo
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.21-27
    • /
    • 2021
  • In this Paper, Since the 1990s, Korea's credit card industry has steadily developed. As a result, various problems have arisen, such as careless customer information management and loans to low-credit customers. This, in turn, had a high delinquency rate across the card industry and a negative impact on the economy. Therefore, in this paper, based on Azure, we analyze and predict the delinquency and delinquency periods of credit loans according to gender, own car, property, number of children, education level, marital status, and employment status through linear regression analysis and enhanced decision tree algorithm. These predictions can consequently reduce the likelihood of reckless credit lending and issuance of credit cards, reducing the number of bad creditors and reducing the risk of banks. In addition, after classifying and dividing the customer base based on the predicted result, it can be used as a basis for reducing the risk of credit loans by developing a credit product suitable for each customer. The predicted result through Azure showed that when predicting with Linear Regression and Boosted Decision Tree algorithm, the Boosted Decision Tree algorithm made more accurate prediction. In addition, we intend to increase the accuracy of the analysis by assigning a number to each data in the future and predicting again.

Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers (전자건강기록 데이터 기반 욕창 발생 예측모델의 개발 및 평가)

  • Park, Seul Ki;Park, Hyeoun-Ae;Hwang, Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.5
    • /
    • pp.575-585
    • /
    • 2019
  • Purpose: The purpose of this study was to develop predictive models for pressure ulcer incidence using electronic health record (EHR) data and to compare their predictive validity performance indicators with that of the Braden Scale used in the study hospital. Methods: A retrospective case-control study was conducted in a tertiary teaching hospital in Korea. Data of 202 pressure ulcer patients and 14,705 non-pressure ulcer patients admitted between January 2015 and May 2016 were extracted from the EHRs. Three predictive models for pressure ulcer incidence were developed using logistic regression, Cox proportional hazards regression, and decision tree modeling. The predictive validity performance indicators of the three models were compared with those of the Braden Scale. Results: The logistic regression model was most efficient with a high area under the receiver operating characteristics curve (AUC) estimate of 0.97, followed by the decision tree model (AUC 0.95), Cox proportional hazards regression model (AUC 0.95), and the Braden Scale (AUC 0.82). Decreased mobility was the most significant factor in the logistic regression and Cox proportional hazards models, and the endotracheal tube was the most important factor in the decision tree model. Conclusion: Predictive validity performance indicators of the Braden Scale were lower than those of the logistic regression, Cox proportional hazards regression, and decision tree models. The models developed in this study can be used to develop a clinical decision support system that automatically assesses risk for pressure ulcers to aid nurses.

A Study on Determinants of Stockpile Ammunition using Data Mining (데이터 마이닝을 활용한 장기저장탄약 상태 결정요인 분석 연구)

  • Roh, Yu Chan;Cho, Nam-Wook;Lee, Dongnyok
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.297-307
    • /
    • 2020
  • Purpose: The purpose of this study is to analyze the factors that affect ammunition performance by applying data mining techniques to the Ammunition Stockpile Reliability Program (ASRP) data of the 155mm propelling charge. Methods: The ASRP data from 1999 to 2017 have been utilized. Logistic regression and decision tree analysis were used to investigate the factors that affect performance of ammunition. The performance evaluation of each model was conducted through comparison with an artificial neural networks(ANN) model. Results: The results of this study are as follows; logistic regression and the decision tree analysis showed that major defect rate of visual inspection is the most significant factor. Also, muzzle velocity by base charge and muzzle velocity by increment charge are also among the significant factors affecting the performance of 155mm propelling charge. To validate the logistic regression and decision tree models, their classification accuracies have been compared with the results of an ANN model. The results indicate that the logistic regression and decision tree models show sufficient performance which conforms the validity of the models. Conclusion: The main contribution of this paper is that, to our best knowledge, it is the first attempt at identifying the significant factors of ASPR data by using data mining techniques. The approaches suggested in the paper could also be extended to other types ammunition data.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Forecasting Sow's Productivity using the Machine Learning Models (머신러닝을 활용한 모돈의 생산성 예측모델)

  • Lee, Min-Soo;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

Comparative Analysis of Predictors of Depression for Residents in a Metropolitan City using Logistic Regression and Decision Making Tree (로지스틱 회귀분석과 의사결정나무 분석을 이용한 일 대도시 주민의 우울 예측요인 비교 연구)

  • Kim, Soo-Jin;Kim, Bo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.829-839
    • /
    • 2013
  • This study is a descriptive research study with the purpose of predicting and comparing factors of depression affecting residents in a metropolitan city by using logistic regression analysis and decision-making tree analysis. The subjects for the study were 462 residents ($20{\leq}aged{\angle}65$) in a metropolitan city. This study collected data between October 7, 2011 and October 21, 2011 and analyzed them with frequency analysis, percentage, the mean and standard deviation, ${\chi}^2$-test, t-test, logistic regression analysis, roc curve, and a decision-making tree by using SPSS 18.0 program. The common predicting variables of depression in community residents were social dysfunction, perceived physical symptom, and family support. The specialty and sensitivity of logistic regression explained 93.8% and 42.5%. The receiver operating characteristic (roc) curve was used to determine an optimal model. The AUC (area under the curve) was .84. Roc curve was found to be statistically significant (p=<.001). The specialty and sensitivity of decision-making tree analysis were 98.3% and 20.8% respectively. As for the whole classification accuracy, the logistic regression explained 82.0% and the decision making tree analysis explained 80.5%. From the results of this study, it is believed that the sensitivity, the classification accuracy, and the logistics regression analysis as shown in a higher degree may be useful materials to establish a depression prediction model for the community residents.

Machine Learning Approach to Blood Stasis Pattern Identification Based on Self-reported Symptoms (기계학습을 적용한 자기보고 증상 기반의 어혈 변증 모델 구축)

  • Kim, Hyunho;Yang, Seung-Bum;Kang, Yeonseok;Park, Young-Bae;Kim, Jae-Hyo
    • Korean Journal of Acupuncture
    • /
    • v.33 no.3
    • /
    • pp.102-113
    • /
    • 2016
  • Objectives : This study is aimed at developing and discussing the prediction model of blood stasis pattern of traditional Korean medicine(TKM) using machine learning algorithms: multiple logistic regression and decision tree model. Methods : First, we reviewed the blood stasis(BS) questionnaires of Korean, Chinese, and Japanese version to make a integrated BS questionnaire of patient-reported outcomes. Through a human subject research, patients-reported BS symptoms data were acquired. Next, experts decisions of 5 Korean medicine doctor were also acquired, and supervised learning models were developed using multiple logistic regression and decision tree. Results : Integrated BS questionnaire with 24 items was developed. Multiple logistic regression models with accuracy of 0.92(male) and 0.95(female) validated by 10-folds cross-validation were constructed. By decision tree modeling methods, male model with 8 decision node and female model with 6 decision node were made. In the both models, symptoms of 'recent physical trauma', 'chest pain', 'numbness', and 'menstrual disorder(female only)' were considered as important factors. Conclusions : Because machine learning, especially supervised learning, can reveal and suggest important or essential factors among the very various symptoms making up a pattern identification, it can be a very useful tool in researching diagnostics of TKM. With a proper patient-reported outcomes or well-structured database, it can also be applied to a pre-screening solutions of healthcare system in Mibyoung stage.

Prediction of Academic Performance of College Students with Bipolar Disorder using different Deep learning and Machine learning algorithms

  • Peerbasha, S.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.350-358
    • /
    • 2021
  • In modern years, the performance of the students is analysed with lot of difficulties, which is a very important problem in all the academic institutions. The main idea of this paper is to analyze and evaluate the academic performance of the college students with bipolar disorder by applying data mining classification algorithms using Jupiter Notebook, python tool. This tool has been generally used as a decision-making tool in terms of academic performance of the students. The various classifiers could be logistic regression, random forest classifier gini, random forest classifier entropy, decision tree classifier, K-Neighbours classifier, Ada Boost classifier, Extra Tree Classifier, GaussianNB, BernoulliNB are used. The results of such classification model deals with 13 measures like Accuracy, Precision, Recall, F1 Measure, Sensitivity, Specificity, R Squared, Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, TPR, TNR, FPR and FNR. Therefore, conclusion could be reached that the Decision Tree Classifier is better than that of different algorithms.

Data Mining Approach to Clinical Decision Support System for Hypertension Management (고혈압관리를 위한 의사지원결정시스템의 데이터마이닝 접근)

  • 김태수;채영문;조승연;윤진희;김도마
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.203-212
    • /
    • 2002
  • This study examined the predictive power of data mining algorithms by comparing the performance of logistic regression and decision tree algorithm, called CHAID (Chi-squared Automatic Interaction Detection), On the contrary to the previous studies, decision tree performed better than logistic regression. We have also developed a CDSS (Clinical Decision Support System) with three modules (doctor, nurse, and patient) based on data warehouse architecture. Data warehouse collects and integrates relevant information from various databases from hospital information system (HIS ). This system can help improve decision making capability of doctors and improve accessibility of educational material for patients.

  • PDF