• Title/Summary/Keyword: Decision Error

Search Result 885, Processing Time 0.031 seconds

Blind Algorithms with Decision Feedback based on Zero-Error Probability for Constant Modulus Errors

  • Kim, Nam-Yong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.753-758
    • /
    • 2011
  • The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged power of constant modulus error (CME) defined as the difference between an instant output power and a constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of blind equalization environments, the proposed decision feedback version has superior performance enhancement particularly in cases of severe channel distortions.

An Algorithm for Bit Error Rate Monitoring and Adaptive Decision Threshold Optimization Based on Pseudo-error Counting Scheme

  • Kim, Sung-Man
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • Bit error rate (BER) monitoring is the ultimate goal of performance monitoring in all digital transmission systems as well as optical fiber transmission systems. To achieve this goal, optimization of the decision threshold must also be considered because BER is dependent on the level of decision threshold. In this paper, we analyze a pseudo-error counting scheme and propose an algorithm to achieve both BER monitoring and adaptive decision threshold optimization in optical fiber transmission systems. To verify the effectiveness of the proposed algorithm, we conduct computer simulations in both Gaussian and non-Gaussian distribution cases. According to the simulation results, BER and the optimum decision threshold can be estimated with the errors of < 20% and < 10 mV, respectively, within 0.1-s processing time in > 40-Gb/s transmission systems.

Error-detection-coding-aided iterative hard decision interference cancellation for MIMO systems with HARQ

  • Park, Sangjoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1016-1030
    • /
    • 2018
  • In this paper, an error-detection-coding-aided iterative hard decision interference cancellation (EDC-IHIC) scheme for multiple-input multiple-output systems employing hybrid automatic repeat request (HARQ) for multi-packet transmission is developed and investigated. In the EDC-IHIC scheme, only packets identified as error-free by the EDC are submitted to the interference cancellation (IC) stage for cancellation from the received signals. Therefore, the possibility of error propagation, including inter-transmission error propagation, can be eliminated using EDC-IHIC. Because EDC must be implemented in systems that employ HARQ to determine packet retransmission, error propagation can be prevented without the need for additional redundancy. The results of simulations conducted herein verify that the EDC-IHIC scheme outperforms conventional hard decision IC schemes in terms of the packet error rate in various environments.

Design of Decision Error Model for Reliability of Sound Quality Analysis and Its Experimental Verification (프린터 음질평가의 신뢰성을 위한 결정오차 모델설계 및 실험적 검증)

  • Kim, Eui-Youl;Lee, Young-Jun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.605-618
    • /
    • 2012
  • In this study, the possibility of decision error is investigated to identify and improve the reliability of participants in the process of conducting the sound quality analysis for laser printers. So far, there is not a way to identify and express the possibility of individual participant quantitatively. Thus, the decision error model is proposed which is based on the expectation value between the perceived sounds. Through the experimental verification on the laser printers, it was found that the possibility of decision error is affected according to the normalized difference. The possibility of decision error has inversely proportional to the normalized difference between the perceived sounds. When the normalized difference becomes small value, the uncertainly between decisions is inversely increase, and then it is difficult to obtain the proper result in the process of the jury evaluation for laser printers. For this reason, in this study, the proposed decision error model is added in the previous step of the correlation verification. Comparing to the conventional process only using the correlation based method, after the reliability of each participant is verified, the correlation with the mean response of participants is verified. It was found that the participants who were recognized as having unusual preferences are actually identified as having the reliability problem. Based on the results of this study, the proposed decision error model will be helpful to identify and improve the reliability of participants in the following study for the sound quality analysis.

Hybrid decision decoding for the extended hamming codes (확대 Hamming 부호에 대한 혼합판정 복호기법)

  • 정창기;이응돈;김정구;주언경
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.32-39
    • /
    • 1996
  • Hybrid decision decoding for the extended hamming codes without retransmission, which is a combination of hard and soft decision decoding, is proposed and its performance is analyzed in this paper. As results, hybsrid decision decoding shows a little bit higher residual bit error rate than soft decision decoding. However, as the size of the extended hamming code increases, the difference of th enumber of comparisons increases further. In addition, hybrid decision decoding shows almost same residual bit error rate as hard decision decoding with retrassmission and shows much lower residual bit error rate than hard decision decoding without retransmission.

  • PDF

Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.649-664
    • /
    • 2011
  • Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.

Communication Equalizer Algorithms with Decision Feedback based on Error Probability (오류 확률에 근거한 결정 궤환 방식의 통신 등화 알고리듬)

  • Kim, Nam-Yong;Hwang, Young-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2390-2395
    • /
    • 2011
  • For intersymbol interference (ISI) compensation from communication channels with multi-path fading and impulsive noise, a decision feedback equalizer algorithm that minimizes Euclidean distance of error probability is proposed. The Euclidean distance of error probability is defined as the quadratic distance between the probability error signal and Dirac-delta function. By minimizing the distance with respect to equalizer weight based on decision feedback structures, the proposed decision feedback algorithm has shown to have significant effect of residual ISI cancellation on severe multipath channels as well as robustness against impulsive noise.

Performance Enhancement of Decision Directed SNR Estimation by Correction Scheme of SNR Estimation Error (결정지향 SNR 추정방식에서의 추정오차 보정기법을 통한 SNR 추정성능개선)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.982-987
    • /
    • 2012
  • In this paper, the SNR estimation error of Decision Directed SNR estimation method in AWGN is investigated, which uses samples received in reference decision region. In communication system receiver, when SNR estimation scheme using error vectors between ideal sample points and received sample points of reference region is adopted, the samples contain incorrectly received samples due to AWGN. Consequently, the mean of estimated reference constellation point is shifted and Decision Directed SNR estimation is inaccurately performed. These effects are explained by modified probability density function and difference between actual SNR and estimated SNR is theoretically derived and quantatively analyzed. It is proved that SNR estimation error obtained through computer simulation is matched up with derived one, and SNR estimation performance is enhanced significantly by adopting suggested correction scheme.

Ensemble of Fuzzy Decision Tree for Efficient Indoor Space Recognition

  • Kim, Kisang;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we expand the process of classification to an ensemble of fuzzy decision tree. For indoor space recognition, many research use Boosted Tree, consists of Adaboost and decision tree. The Boosted Tree extracts an optimal decision tree in stages. On each stage, Boosted Tree extracts the good decision tree by minimizing the weighted error of classification. This decision tree performs a hard decision. In most case, hard decision offer some error when they classify nearby a dividing point. Therefore, We suggest an ensemble of fuzzy decision tree, which offer some flexibility to the Boosted Tree algorithm as well as a high performance. In experimental results, we evaluate that the accuracy of suggested methods improved about 13% than the traditional one.

A New Decision-Directed Equalization with Improved Blind Convergence Properties by Error Scaling (오차 스케일링에 의해 블라인드 수렴 특성을 개선한 새로운 판정의거 등화)

  • Oh, Kil Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.419-424
    • /
    • 2015
  • The Decision-directed (DD) algorithm is known to be not effective to initialize a blind equalizer in the channel conditions when the eye diagram of received signals is completely closed because it can not open the eye diagram enough. In this paper, we propose a new error to replace the error of the conventional DD algorithm. The new DD error is the conventional DD error scaled by the modulus of symbol decision, new DD algorithm using this error is effective to open the closed eye diagram in early stage of equalization unlike the conventional DD. The new DD algorithm appling the new error is showed excellent convergence characteristics as compared to the CMA widely used in blind initialization, particularly, is useful for equalization of signals having multimodulus. The performance of the new DD algorithm is verified through the simulation for the higher-order QAM signals.