• Title/Summary/Keyword: Deceleration Time

Search Result 196, Processing Time 0.027 seconds

Effect of the Main Structure Stiffness on the Frontal Collision Behavior (차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향)

  • Kim, Chon-Wook;Han, Byoung-Kee;Kim, Jong-Chan;Jung, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.

Development of Acceleration/Deceleration Method for Real-time Control of Autonomous Mobile Robots (자율 이동 로봇의 실시간 제어를 위한 가.감속 방법의 개발)

  • 이수종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.667-672
    • /
    • 2000
  • This article presents a new acceleration/deceleration method for real-time control of autonomous mobile robots. In this method, a function which produces the table of acceleration/deceleration in real-time is proposed. This function, while satisfying the basic concept of mechanics, can choose both various ranges of velocity and distance ranges for the selected velocities. Moreover it can control motors with real time. This function is convenient to be realized by programming. and it is faster than other functions because it can be made by assembly language.

  • PDF

Development o f Acceleration/deceleration Function for Real-time Control of Autonomous Mobile Robots (자율 이동 로봇의 실시간 제어를 위한 가.감속 함수의 개발)

  • 이수종;정원지
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.36-41
    • /
    • 2001
  • This article presents a new acceleration/deceleration method for real-time control of autonomous mobile robots. In this method, a function which produces the table of acceleration/deceleration in real-time is proposed. This function, while sat- isfying the basic concept of mechanics, can choose both various ranges of velocity and distance ranges for the selected velocities. Moreover it can control motors in real time. This function is convenient to be realized by programming. In addi- tion, it is faster than other functions because it can be written by assembly language.

  • PDF

Tapping Machine of World′s Fastest Speed (초고속 태핑머신 개발)

  • 김선호;김동훈;김선민;이돈진;이선규;안중환;이상규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.382-386
    • /
    • 2002
  • The tapping is machining process that makes a female screw on the parts to be assembly together. It is used for the high-speed tapping machine with synchronizing function for the high productivity. This paper describes the development of the ultra high-speed tapping machine with 10,000rpm. The key factors in the tapping speed are the acceleration/deceleration velocity and the synchronizing errors between the spindle motor and feeding motor. To minimizing acceleration/deceleration time, the low inertia spindle with synchronous built-in servo motor is developed. To minimizing synchronizing errors, the tapping cycle algorithm under open architecture CNC environment is optimized. The developed tapping machine has 0.13sec/10,000rpm in acceleration/deceleration time and the synchronizing error below 4.0%. It has 0.55sec for cycle time of one female screw, M3 tap, 2 times depth of tap diameter.

  • PDF

A Study on Motion Acceleration-Deceleration Time to Suppress Residual Vibration of Robot (로봇 잔류 진동 저감을 위한 모션 가감속 시간 설계 연구)

  • Kang, Han Sol;Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, we proposed a method to determine the acceleration/deceleration time of the motion for reducing the residual vibration caused by the resonance of the robot in the high-speed motion. The relationship between the acceleration/deceleration time and the residual vibration was discussed for the trapezoidal velocity profile by analyzing the time when the jerk happens. The natural frequency of the robot can be estimated in advance through the dynamics simulation. The simulation and experiment for both cases where the moving distance of the robot is long enough and the distance is short, are implemented in the 1-DOF linear robot. Simulation and experimental results show that when the acceleration/deceleration time is a multiple of the vibration period, the settling time and the amplitude of the residual vibration become less than when the time is not a multiple.

A Study on the Length of Deceleration Lane at Freeway Diverging Areas (고속도로 분기부에서의 감속차로 길이에 관한 연구)

  • Kim, Dong Nyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.227-234
    • /
    • 2009
  • At present, the length of deceleration lane at freeway diverging areas are designed based on the design speed of main lines and ramps. This is possible on assumption that diverging vehicles decelerate at deceleration section after moving to shoulder lane in advance. But with high diverging volume, several vehicles will try to change to exit lane at the same time. This will cause the distribution of main lane flows or some vehicles may encounter short deceleration length because they miss the proper time to change the lane. The purpose of this study is to establish a design guideline of the length of deceleration section considering the volume of diverging traffic. Also, the results of analysis by the FRESIM simulation model shows that some improvements in respect of delays, speeds and speed deviations of mainline and deceleration lane.

Action of Synchronous error between Z axis and spindle axis on rigid tapping (Rigid 탭핑에서의 Z축과 주축간 동기오차의 거동)

  • 이돈진;강지웅;김용규;김선호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.184-187
    • /
    • 2000
  • This paper describes action of synchronous error between z axis and spindle axis on rigid tapping. Because rigid tapping cuts the threads synchronizing the movement of z axis to spindle rotation, synchronous error between z axis and spindle is very important. Increase of synchronous error degrades the accuracy of thread and crushes the tap in worst case. So we developed the realtime measurement system of synchronous error in order to know the action of synchronous error on rigid tapping. In result, we have known that synchronous error was increased according to rise of spindle speed and z axis speed. And because the cutting torque(M3-30Ncm∼M10-300Ncm) on rigid tapping are less than maximum motor torque(3500Ncm), it specially doesn't affect the synchronous error. The most important parameter which has affected the increase of synchronous error was acceleration/deceleration time. On worst case, spindle motor was tripped because of the excess of synchronous error. Because the acceleration/deceleration time ocuupies the most of the total cutting time, in order to move on the high speed rigid tapping, the acceleration/deceleration time of spindle must be remarkably reduced.

  • PDF

Development and Evaluation of Ultra High-Speed Tapping Machine (초고속 태핑머신 개발 및 평가)

  • 김선호;김동훈;김선민;이돈진;이선규;안중환;이상규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.221-227
    • /
    • 2002
  • Tapping is a machining process that makes a female screw on parts to be assembly together. Recently, as the number of small and compact products increases the radius of tap as small as 1 mm is not unusual and more accurate tapping is needed. In complying with those needs, some high-speed tapping machines with synchronizing function have been developed. This paper describes the development of an ultra high-speed tapping machine up to 10,000rpm. The key factors in the tapping speed are the acceleration/deceleration and the synchronizing errors between spindle motor and fred motor. To minimize the acceleration/deceleration time, a low inertia spindle with a synchronous built-in servo motor was developed. To minimize the synchronizing errors, the tapping cycle algorithm was optimized on an open architecture CNC. The developed tapping machine has the acceleration/deceleration time of 0.13sec/10,000rpm for rigid tapping and the synchronizing error below 4.4%. The cycle time for tapping a female screw of M3 and depth 2 times diameter was 0.55sec.

A study on the Tool Path Generation of High-Speed Machining by the Distortion of Original Tool Path (지령 경로의 왜곡에 의한 고속가공 경로의 생성에 관한 연구)

  • 이철수;이제필
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.15-28
    • /
    • 1998
  • Recently may investigations have been studied on the high-speed machining by using machine tools. A CNC machine tool makes some tool path errors caused by software acceleration/deceleration. The faster a cutting feedrate is, the bigger the tool path errors are. Some known methods reduce these kinds of errors, but they make the total cutting time increased. This paper presents a feed-forward algorithm that can be generated by distorting the original tool path, and reduces the tool path errors and the total cutting time. The algorithm to generate a new tool path is represented as following; 1)calculating each distance of software acceleration/deceleration between two adjacent blocks, 2) estimating the distorted distance which is the adjacent-ratio-constant(k1, k2) multiply the distance of software acceleration/deceleration, 3) generating a 3-degree Bezier curve approximating the distorted tool path, 4) symmetrically transforming the Bezier curve about the intersection point between two blocks, and 5) connecting the transformed Bezier curve with the original tool path. The algorithm is applied to FANUC 0M. The study is to promote the high-precision machining and to reduce the total cutting time.

  • PDF

Real-time Line Interpolation of a NURBS Curve based on the Acceleration and Deceleration of a Servo Motor (서보 모터의 가감속을 고려한 NURBS 곡선의 실시간 직선 보간)

  • 이제필;이철수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.405-410
    • /
    • 2001
  • In this paper, a new parametric curve interpolator is proposed based on a 3D(3-dimensional) NURBS curve. A free curve is generally divided into small linear segments or circular arcs in CNC machining. The method has caused to a command error, the limitation of machining speed, and the irregular machining surface. The proposed real-time 3D NURBS interpolator continuously generates a linear segment within the range of allowable acceleration/deceleration in the motion controller. Therefore, the algorithm calculates the curvature and the remained distance of a command curve for the smoothing machining. It is expected to attaining high speed and high precision machining in CNC Machine Tool.

  • PDF