• Title/Summary/Keyword: Debris flows

Search Result 113, Processing Time 0.02 seconds

A Study on Transportation Characteristics of Debris dependent on Geologic Conditions (지질조건에 따른 사태물질 이동특성 고찰)

  • Chae Byung-Gon;Kim Won-Young;Lee Choon-Oh;Kim Kyeong-Su;Cho Yong-Chan;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.185-199
    • /
    • 2005
  • Properties of sliding materials are dependent on the lithology because debris is the product of rock weathering processes. In order to characterize transportation behavior of debris dependent of debris types, this study selected 26 debris flows over three areas composed with different rock weathering types and topographic conditions. Analyses of lithology, weathering, and topographic characteristics were performed by detailed field survey. Based on the field survey data, transportation behavior of debris was studied at the aspect of the relationship of grain size and volume of debris as well as topographic conditions. According to the study results, change of slope angle is very influential factor on runout distance of debris among the topographic factors. Because the sliding velocity and the energy of debris are frequently changed and more irregular on an undulating slope, the unout distance of debris is larger than that of an uniformly dipping slope. Runout distance of debris is also influenced by volume and grain size of debris. Volume of debris in the gabbro is four or five times larger than that of the granite area because it is controlled by the lithology. Considered with grain size distribution, runout distance of debris is longer in the gabbro area which is composed with irregular grain size bearing large corestones than that in the medium grained granite area.

A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) (대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 3차원 토석류 거동분석)

  • Jeong, Sang-Seom;Lee, Kwang-Woo;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.45-57
    • /
    • 2015
  • This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) technique to simulate the debris flow. The main objective of this study is to investigate the applicability of CEL technique to the behavior of debris flow, such as flow velocity and influence area. Comprehensive studies to verify the behavior of debris flow are presented in this study. Through comparison with measured flow velocity from Umyeonsan (Mt.), CEL approach was found to be in good agreement with the general trend observed by in actual debris flow. In addition, CEL technique accurately simulated the behavior of debris flows, therefore, it can be used for designing the countermeasure structure.

A Random Walk Model for Estimating Debris Flow Damage Range (랜덤워크 모델을 이용한 토석류 산사태 피해범위 산정기법 제안)

  • Young-Suk Song;Min-Sun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.201-211
    • /
    • 2023
  • This study investigated the damage range of the debris flow to predict the amount of collapsed soil in a landslide event. The height of the collapsed slope and the distance traveled by the collapsed soil were used to predict the total trajectory distance using a random walk model. Debris flow trajectory probabilities were calculated through 10,000 Monte Carlo simulations and were used to calculate the damage range as measured from the landslide scar to its toe. Compiled information on debris flows that occurred in the Cheonwangbong area of Mt. Jirisan was used to test the accuracy of the proposed random walk model in estimating the damage range of debris flow. Results of the comparison reveal that the proposed model shows reasonable accuracy in estimating the damage range of debris flow and that using 10 m × 10 m cells allows the damage range to be reproduced with satisfactory precision.

Study on the Terrestrial LiDAR Topographic Data Construction for Mountainous Disaster Hazard Analysis (산지재해 위험성 분석을 위한 지상 LiDAR 지형자료 구축에 관한 연구)

  • Jun, Kye Won;Oh, Chae Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.105-110
    • /
    • 2016
  • Mountainous disasters such as landslides and debris flow are difficult to forecast. Debris flow in particular often flows along the valley until it reaches the road or residential area, causing casualties and huge damages. In this study, the researchers selected Seoraksan National Park area located at Inje County (Inje-gun), Gangwon Province-where many mountainous disasters occur due to localized torrential downpours-for the damage reduction and cause analysis of the area experiencing frequent mountainous disasters every year. Then, the researchers conducted the field study and constructed geospatial information data by GIS method to analyze the characteristics of the disaster-occurring area. Also, to extract more precise geographic parameters, the researchers scanned debris flow triggering area through terrestrial LiDAR and constructed 3D geographical data. LiDAR geographical data was then compared with the existing numerical map to evaluate its precision and made the comparative analysis with the geographic data before and after the disaster occurrence. In the future, it will be utilized as basic data for risk analysis of mountainous disaster or disaster reduction measures through a fine-grid topographical map.

Analysis of Erosion and Deposition by Debris-flow with LiDAR (지상 LiDAR를 이용한 토석류 발생에 의한 침식, 퇴적량 측정)

  • Jun, Byong-Hee;Jang, Chang-Deok;Kim, Nam-Gyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2010
  • The intensive rainfall over 455 mm occurred between on 9 to 14 July 2009 triggered debris flows around the mountain area in Jecheon County. We mapped the debris flow area and estimated the debris flow volume using a high resolution digital elevation model (DEM) generated respectively from terrestrial LiDAR (Light Detection And Ranging) and topographic maps. For the LiDAR measurement, the terrestrial laser scanning system RIEGL LMS-Z390i which is equipped with GPS system and high-resolution digital camera were used. After the clipping and filtering, the point data generated by LiDAR scanning were overlapped with digital map and produced DEM after debris flow. The comparison between digital map and LiDAR scanning result showed the erosion and deposition volumes of about $17,586m^3$ and $7,520m^3$, respectively. The LiDAR data allowed comprehensive investigation of the morphological features present along the sliding surface and in the deposit areas.

A Case Study on Disaster and Characteristics of Debris Flows by Heavy Localized Rainfall of Gangwon Areas in July, 2006 (2006년 강원지역 토석류의 특성과 피해현황분석)

  • Song, Pyung-Hyun;You, Byung-Ok;Jung, Chan-Gyu;Ahn, Kwang-kuk;Lee, Cheo-kun
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.146-155
    • /
    • 2006
  • A study for damage degree and reduction programs of disaster was performed after collecting and analyzing the damage data by the type of flood damage resulting from the localized rainfall Gangwon area has been damaged by heavy localized rainfall between July 15 and 17 in 2006 Specially, a number of people was killed and much properties were lost in Inje, Yangyang and Pyeongchang area Recently, the damages by debris flow has been increased more than any other disaster causes, because heavy rainfall closed to about 100mm/hr by global warming in short time has been developed frequently. In other words, an area forming a highland has a potential debris flow Therefore, in this study, the damages data by debris flow in the area of Inje and Yangyang were collected and analyzed to consider the type of flood damage In future, it must be tried to find a complementary solution and establishing management system for debris flow when the civil construction begins

  • PDF

An Experimental Study on Cylindrical Countermeasures for Dissipation of Debris Flow Energy (원통형 대책 구조물의 토석류의 에너지 저감 효과에 대한 실험적 연구)

  • Kim, Beom-Jun;Han, Kwang-Do;Kim, Ho-Seop;Choi, Clarence E.;Yune, Chan-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • In this study, to investigate the effect of cylindrical countermeasure on the flow characteristics of debris flow, a series of small-scale tests were conducted using a flume with cylindrical baffles. Various heights and row numbers of installed baffles were considered as a test condition. High speed cameras and laser level sensors were also installed at the top and side of the channel, respectively, to capture the debris flow dynamics before and after baffles. Based on test results, the energy dissipation of debris flow due to baffles was analyzed. Test results showed that baffles can significantly reduce the velocity and flow depth of debris flows. The energy dissipation effect of baffles also increase as the increase of height and row number of baffles.

A Study on Application of Very Short-range-forecast Rainfall for the Early Warning of Mud-debris Flows (토사재해 예경보를 위한 초단기 예측강우의 활용에 대한 연구)

  • Jun, Hwandon;Kim, Soojun
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.366-374
    • /
    • 2017
  • The objective of this study is to explore the applicability of very short-range-forecast rainfall for the early warning of mud-debris flows. An artificial neural network was applied to use the very short-range-forecast rainfall data. The neural network is learned by using the relationship between the radar and the AWS, and forecasted rainfall is estimated by replacing the radar rainfall with the MAPLE data as the very short-range-forecast rainfall data. The applicability of forecasted rainfall by the MAPLE was compared with the AWS rainfall at the test-bed using the rainfall criteria for cumulative rainfall of 6hr, 12hr, and 24hr respectively. As a result, it was confirmed that forecasted rainfall using the MAPLE can be issued prior to the AWS warning.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF