• Title/Summary/Keyword: Debris flow

Search Result 439, Processing Time 0.026 seconds

A Study on Detection and Monitoring in land creeping area by Using the UAV (무인기를 활용한 산지 땅밀림 피해지점 탐지 및 모니터링 방안 연구)

  • Seo, Jun-Pyo;Woo, Choong-Shik;Lee, Chang-Woo;Kim, Dong-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.481-487
    • /
    • 2018
  • This paper proposes a method to detect and monitor the land creeping area using a UAV to analyze the damaged area efficiently. Using a UAV, it was possible to secure the safety of the investigators before the field survey and effectively utilize it to establish an investigation plan because an orthophoto can be used to detect and scale the cracks in a land creeping area. In addition, it was possible to analyze the scale of the crack quantitatively by extracting the topographic information from the orthophoto. The study sites were found to have a total crack area of 1.01 ha, a length of 1.07 km, an average width of 10 m, and a step distance of 1 to 10 m. Periodic UAV measurements can be used to detect displacements on the land creeping area and monitor the direction and scale of crack spread. Therefore, it is expected to be used effectively during recovery planning. Applying the UAV to the land creeping area resulted in the qualitative and quantitative results quickly and easily in dangerous mountainous watersheds. Therefore, it is expected that it will contribute to the development of related industries because of the high availability of a UAV in forest soil sediment disasters, such as landslides, debris flow, and land creeping area.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

An Experimental Study for Clogging Factors Estimation of Grate Inlets in Urban Area (도시지역에서 빗물받이의 막힘계수 산정에 관한 실험적 연구)

  • Kim, Jung Soo;Kwon, In Sup;Yoon, Sei Eui;Lee, Jong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.179-186
    • /
    • 2006
  • Effective interception area of street grate inlets was decreased by clogging with trash, debris, and sand. It also decreased the interception capability of grate inlets and increased the inundation area in street. Therefore, it is necessary to analyze the clogging characteristics and interception capability change by clogging for appropriate design and management of grate inlets. Hydraulic experimental apparatus which can be changed the gutter transverse slopes, longitudinal slopes of street and clogging condition of grate inlet ($40{\times}50cm$) was installed for this study. 81 total experiments were conducted with 8 different clogging condition. The interception capacities of grate inlets clogged curb direction are smaller than those of clogged flow direction. As the longitudinal slopes of street increase, the interception capacity of grate inlet decreases due to splash-over phenomena. This is also observed at grate inlets which has no clogging condition. In general, 50% of clogging factor was selected in design of grate inlet in foreign country. The clogging factor for same clogging condition are suggested 0.25~0.65 in domestic urban area.

Numerical simulation of flood water level in a small mountain stream considering cross-section blocking and riverbed changes - A case study of Shingwangcheon stream in Pohang before and after Typhoon Hinnamnor flood (단면 폐색과 하상 변화를 고려한 산지 중소하천의 홍수위 수치모의 - 태풍 힌남노 전후의 포항 신광천을 사례로 -)

  • Lee, Chanjoo;Jang, Eun-kyung;Ahn, Sunggi;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.837-844
    • /
    • 2023
  • Small and medium-sized mountain rivers that flow through steep, confined valleys carry large amounts of coarse-grained sediment and woody debris during floods. It causes an increase in flood water level by aggrading the riverbed and the cross-section blockage due to driftwood accumulation during flooding. However, the existing flood level calculation in the river basic plan does not consider these changes. In this study, using the Typhoon Hinnamnor flood in September 2022 as an example, we performed numerical simulations using the HEC-RAS model, taking into account the blockage of a cross-section at the bridge and changes in riverbed elevation that occurred during floods, and analyzed the flood level to predict flood risk. This study's results show that flooding occurs if more than 30% of the cross-section is blocked. The rise of flood water levels corresponds to that of the riverbed due to sediment deposition. These results can be used as basic data to prevent and effectively manage flood damage and contribute to establishing flood defense measures that consider actual phenomena.

Sedimentary Facies and Evolution of the Cretaceous Deep-Sea Channel System in Magallanes Basin, Southern Chile (마젤란 분지의 백악기 심해저 하도 퇴적계의 퇴적상 및 진화)

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.385-400
    • /
    • 2004
  • The Lago Sofia Conglomerate encased in the 2km thick hemipelagic mudstones and thinbedded turbidites of the Cretaceous Cerro Toro Formation, southern Chile, is a deposit of a gigantic submarine channel developed along a foredeep trough. It is hundreds of meters thick kilometers wide, and extends for more than 120km from north to south, representing one of the largest ancient submarine channels in the world. The channel deposits consist of four major facies, including stratified conglomerates (Facies A), massive or graded conglomerates (Facies B), normally graded conglomerates with intraformational megaclasts (Facies C), and thick-bedded massive sandstones (Facies D). Conglomerates of Facies A and B show laterally inclined stratification, foreset stratification, and hollow-fill structures, reminiscent of terrestrial fluvial deposits and are suggestive of highly competent gravelly turbidity currents. Facies C conglomerates are interpreted as deposits of composite or multiphase debris flows associated with preceding hyperconcentrated flows. Facies D sandstones indicate rapidly dissipating, sand-rich turbidity currents. The Lago Sofia Conglomerate occurs as isolated channel-fill bodies in the northern part of the study area, generally less than 100m thick, composed mainly of Facies C conglomerates and intercalated between much thicker fine-grained deposits. Paleocurrent data indicate sediment transport to the east and southeast. They are interpreted to represent tributaries of a larger submarine channel system, which joined to form a trunk channel to the south. The conglomerate in the southern part is more than 300 m thick, composed of subequal proportions of Facies A, B, and C conglomerates, and overlain by hundreds of m-thick turbidite sandstones (Facies D) with scarce intervening fine-grained deposits. It is interpreted as vertically stacked and interconnected channel bodies formed by a trunk channel confined along the axis of the foredeep trough. The channel bodies in the southern part are classified into 5 architectural elements on the basis of large-scale bed geometry and sedimentary facies: (1) stacked sheets, indicative of bedload deposition by turbidity currents and typical of broad gravel bars in terrestrial gravelly braided rivers, (2) laterally-inclined strata, suggestive of lateral accretion with respect to paleocurrent direction and related to spiral flows in curved channel segments around bars, (3) foreset strata, interpreted as the deposits of targe gravel dunes that have migrated downstream under quasi-steady turbidity currents, (4) hollow fills, which are filling thalwegs, minor channels, and local scours, and (5) mass-flow deposits of Facies C. The stacked sheets, laterally inclined strata, and hollow fills are laterally transitional to one another, reflecting juxtaposed geomorphic units of deep-sea channel systems. It is noticeable that the channel bodies in the southern part are of feet stacked toward the east, indicating eastward migration of the channel thalwegs. The laterally inclined strata also dip dominantly to the east. These features suggest that the trunk channel of the Lago Sofia submarine channel system gradually migrated eastward. The eastward channel migration is Interpreted to be due to tectonic forcing imposed by the subduction of an oceanic plate beneath the Andean Cordillera just to the west of the Lago Sofia submarine channel.

Study on the Characteristics of the Slow-moving Landslide (Landcreep) in the Sanji Valley of Jinju (진주시 산지골 유역내 땅밀림지 특성에 관한 연구)

  • Park, Jae-Hyeon;Kim, Seon Yeop;Lee, Sang Hyeon;Kang, Han Byoel
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.115-124
    • /
    • 2022
  • This study was conducted to obtain basic data that could help prevent damage caused by slow-moving landslides (land-creep). Specifically, the geological, topographic, and physical characteristics of land-creep were analyzed in Jiphyeon-myeon, Jinju-si. The first and second analyzed land-creeps occurred in 1982 and 2019, respectively. The area damaged in the second land-creep was about 11.5-fold larger than that damaged in the first land-creep. The dominant constituent rock in the land-creep area was sedimentary rock, which seems to be weakly resistant to weathering. The areas that collapsed due to land-creep were related to the presence of separated rocks between the bedding plane in the estimated activity surface over the slope direction and the vertically developed joint surface. Thus, surface water and soil debris were introduced through the gaps of separated rocks. Additionally, the areas collapsed due to the combination of the bedding plane and joint surface shale and sandstone showed an onion structure of weathered outcrop from the edge to inner part caused by weathering from ground water. Consequently, core stones were formed. The study area was a typical area of land-creep in a mountain caused by ground water. Land-creep was classified into convex areas of colluvial land-creep. The landslide-risk rating in the study area was classified into three and five classes. The flow of ground water moved to the northeast and coincided with the direction of the collapse. Soil bulk density in the collapsed area was lower than that in ridge area, which was rarely affected by land-creep. Thus, soil bulk density was affected by the soil disturbance in the collapsed area.

A Study on Type Classification of Erosion Control Dam using Ecosystem Connectivity (생태연결성을 고려한 사방댐 유형분류에 관한 연구)

  • Koo, Gil-Bon;Kim, Min-Sik;Kim, Chul;Yu, Seung-mun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.483-493
    • /
    • 2011
  • Erosion control dams play a primary role in preventing or controlling natural disasters (landslide and debris flow etc.) and also conserve ecosystem in forested watersheds. This study examines structural characteristics of the dams such as the height of ecosystem control and the ecosystem permeability of the erosion control dams under standard drawings and the existing construction works. The objective of this study was to characterize the type classification of erosion control dams as ecosystem. Average permeability was highest on eco-piller dam (63.0%), followed in increasing order by wire rope (13.9%), silt dam (10.9%), multifunctional dam (7.2%), and gravity dam (0.4%). The height of ecosystem control was highest on gravity dam (3.2 m), followed in increasing order by multifunctional dam (1.7 m), wire rope dam (1.2 m), silt dam (0.6 m), and eco-piller dam (0.0 m). Criteria for defining the height of ecosystem control was indefinite. We grouped erosion control dams into three functional types (eco-connection, eco-semi connection, and eco-disconnection) by considering physical and structural characteristics such as the ecosystem permeability and the height of ecosystem control. The type of eco-connection (permeability > 20%) had connection areas from streambed to adjacent riparian areas, and these connection areas serve as ecosystem corridors for fauna and flora. Typical wildlife species includes mammals, reptiles, amphibians, and fishes. The type of eco-semi connection (5% < permeability < 20%) had < 2 m in the eco-barrier height from streambed, however, this type of dams partially serve as wildlife corridors and often provide fish ways. The type of eco-disconnection (permeability < 5%) had > 2 m in the eco-barrier height from streambed, thereby preventing wildlife movement.

Application and Comparative Analysis of River Discharge Estimation Methods Using Surface Velocity (표면유속을 이용한 하천 유량산정방법의 적용 및 비교 분석)

  • Jae Hyun, Song;Seok Geun Park;Chi Young Kim;Hung Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.15-32
    • /
    • 2023
  • There are some difficulties such as safety problem and need of manpower in measuring discharge by submerging the instruments because of many floating debris and very fast flow in the river during the flood season. As an alternative, microwave water surface current meters have been increasingly used these days, which are easy to measure the discharge in the field without contacting the water surface directly. But it is also hard to apply the method in the sudden and rapidly changing field conditions. Therefore, the estimation of the discharge using the surface velocity in flood conditions requires a theoretical and economical approach. In this study, the measurements from microwave water surface current meter and rating curve were collected and then analyzed by the discharge estimation method using the surface velocity. Generally, the measured and converted discharge are analyzed to be similar in all methods at a hydraulic radius of 3 m or over or a mean velocity of 2 ㎧ or more. Besides, the study computed the discharge by the index velocity method and the velocity profile method with the maximum surface velocity in the section where the maximum velocity occurs at the high water level range of the rating curve among the target locations. As a result, the mean relative error with the converted discharge was within 10%. That is, in flood season, the discharge estimation method using one maximum surface velocity measurement, index velocity method, and velocity profile method can be applied to develop high-level extrapolation, therefore, it is judged that the reliability for the range of extrapolation estimation could be improved. Therefore, the discharge estimation method using the surface velocity is expected to become a fast and efficient discharge measurement method during the flood season.