• Title/Summary/Keyword: Debris control facility

Search Result 10, Processing Time 0.033 seconds

Characteristic Analysis of Dredging and Sedimentation Debris Control Facilities in Inje, Gangwon (강원 인제지역 토석류 사방시설의 준설 및 퇴적 특성)

  • Park, Byungsoo;Jun, Sanghyun;Um, Jaekyung;Cho, Kwangjun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2013
  • 5 each permeable and impermeable debris dams were selected to analyze the characteristics of dredging and sedimentation according to facility type in Inje, Gangwon. Field tests for the ground water table and sedimentation characteristics of the selected dams were performed. Furthermore, data of the dredging amount, storage capacity, and drainage area were analyzed for the 51 more debris control facilities. From the results of field tests, it was found that the storage capacity of impermeable debris dam could be not enough when the large debris flow is produced since sediments are accumulated even if large debris flow was not occurred. Drainage can be a problem since the ground water table of impermeable debris dam was reached to the surface of ground. However, it was found that the ground saturation should not occur at heavy rain since ground water table of permeable debris dam was located in lower part of buttress. Furthermore, from the analysis results of relation among the dredging amount, basin area, and capacity of debris control facility, it was found that size of debris control facility was not reflected by the basin area. Effective planning and construction should be accomplished for the future since the real sedimentation amount was not significant even though large debris dams were constructed.

Analysis of Debris Flow Disaster Area according to Location Change of Check Dam using Kanako-2D (Kanako-2D를 이용한 사방댐 위치 변화에 따른 토석류 피해지 분석)

  • Kim, Young Hwan;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.128-134
    • /
    • 2018
  • With the increase in frequency of typhoons and heavy rains following the climate change, the scale of damage from the calamities in the mountainous areas has been growing larger and larger, which is different from the past. For the case of Korea where 64% of land is consisted of the mountainous areas, establishment of the check dams has been drastically increased after 2000 in order to reduce the damages from the debris flow. However, due to the lack of data on scale, location and kind of check dams established for reducing the damages in debris flow, the measures to prevent damages based on experience and subjective basis have to be relied on. Under this study, the high-precision DEM data was structured by using the terrestrial LiDAR in the Jecheon area where the debris flow damage occurred in July 2009. And, from the numerical models of the debris flow, Kanako-2D that is available to reflect the erosion and deposition action was applied to install the erosion control facilities (water channel, check dam) and analyzed the effect of reducing the debris flow shown in the downstream.After installing the erosion control facilities, most of debris flow moves along the water channel to reduce the area to expand the debris flow, and after installing the check dam, the flow depth and flux of the debris flow were reduced along with the erosion. However, as a result of analyzing the diffusion area, flow depth, erosion and deposition volume of the debris flow generated from the deposition part after modifying the location of the check dams with the damages occurring on private residences and agricultural land located on the upstream area, the highest reduction effect was shown when the check dam is installed in the maximal discharge points.

Analysis of Initial Mass Distribution and Facility Shape to Determine Structural Alternative for Hazardous Zone Vulnerable to Debris Flow Disaster (토사재해 위험지역의 구조적 대안 설정을 위한 사태물질 초기 질량분포 및 방어시설물 형상의 영향 분석)

  • Seong, Joo-Hyun;Oh, Seung Myeong;Jung, Younghun;Byun, Yoseph;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • A 2-D hydrodynamic model for predicting the movement of debris flow was developed. The developed model was validated against a dam break flow problem conducted in EU CADAM project, and the performance of the model was shown to be satisfactory. In order to suggest structural alternative for hazardous zone vulnerable to debris flow disaster, two types of initial mass distribution and two shapes of defensive structure were considered. It was found that 1) the collapse of debris mass initiated with square pyramid shape induced more damage compared with that of cubic shape; and 2) a defensive structure with semi-circular shape was vulnerable to debris flow disaster in terms of debris control or primary defense compared with that of rectangular-shaped structure.

INVESTIGATIONS ON THE RESOLUTION OF SEVERE ACCIDENT ISSUES FOR KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Dong;Kim, Dong-Ha;Kim, Jong-Tae;Kim, Sang-Baik;Song, Jin-Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.617-648
    • /
    • 2009
  • Under the government supported long-term nuclear R&D program, the severe accident research program at KAERI is directed to investigate unresolved severe accident issues such as core debris coolability, steam explosions, and hydrogen combustion both experimentally and numerically. Extensive studies have been performed to evaluate the in-vessel retention of core debris through external reactor vessel cooling concept for APR1400 as a severe accident management strategy. Additionally, an improvement of the insulator design outside the vessel was investigated. To address steam explosions, a series of experiments using a prototypic material was performed in the TROI facility. Major parameters such as material composition and void fraction as well as the relevant physics affecting the energetics of steam explosions were investigated. For hydrogen control in Korean nuclear power plants, evaluation of the hydrogen concentration and the possibility of deflagration-to-detonation transition occurrence in the containment using three-dimensional analysis code, GASFLOW, were performed. Finally, the integrated severe accident analysis code, MIDAS, has been developed for domestication based on MELCOR. The data transfer scheme using pointers was restructured with the modules and the derived-type direct variables using FORTRAN90. New models were implemented to extend the capability of MIDAS.

Research on Environmentally-Sound Erosion Control Works(II) -The Management and Guidelines of Riparian Zone in Japan- (환경(環境)과 조화한 사방사업(砂防事業)(II) -일본(日本)에 있어서 수변지역(水邊地域)의 관리(管理)와 지침(指針)-)

  • Chun, Kun-Woo;Kim, Kyoung-Nam;Seomun, Won;Yeom, Kyu-Jin;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.112-127
    • /
    • 1998
  • A meeting for Japan Society of Erosion Control Engineering took place, from May 20-21 in Sapporo, Japan, with the presentations of 21 special topics and 185 general papers. Special topics consists of 6 copies on volcanic disaster prevention, 6 copies on the activity report of Earthquake Erosion Control Engineering Society, 5 copies on the management and guidelines of riparian zone and 4 copies on debris disaster occurred in 1997. General papers consists of 10 copies on slope stability, 10 copies on slope failure, 9 copies on earthquake, 41 copies on environmental erosion control, 25 copies on debris flow, 11 copies on warning and refuge, 10 copies on erosion control plan, 11 copies on erosion control project, 10 copies on erosion control facility, 12 copies on volcanic erosion control, 4 copies on revegetation technology, 4 copies on forest hydrology, 4 copies on avalanche, 4 copies on landslide, 18 copies on debris flow and 2 other copies presented by international student. Among the special topics, 5 papers with the titles of the function and structure of riparian zone, the interactive relation of flood and riparian zone, the management method of channel and river forest for controlling debris flow, the forest restoration efforts by native population, the law and social issue for building river riparian zone were presented in the subsection of "The Management and Guidelines of Riparian Zone". Thus, this article summarize and introduce the presented contents which are very important and can be referred to keep environmentally sound-river in the erosion control field.

  • PDF

Remotely Operated Decontamination Systems for Use in DFDF

  • Kim, Kiho;Park, Jangjin;Myungseung Yang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.438-446
    • /
    • 2003
  • This paper presents the development of the remotely operated decontamination systems for use in a highly radioactive zone of the DUPIC Fuel Development facility of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute. The remotely operated decontamination systems were designed to completely eliminate human interaction with hazardous radioactive contaminants. These decontamination systems are mainly classified into three systems depending on the task environment - a fabrication equipment decontamination system, a hot-cell floor decontamination system, and an isolation room floor decontamination system. A decontamination system for contaminated fabrication equipment utilizes dry ice pellet blasting method to decontaminate contaminated surface of the equipment. The decontamination systems for the hot-cell floor and isolation room floor employ a vacuum cleaning method to decontaminate the contaminated floor and collect loose dry spent nuclear fuel debris and other radioactive waste placed on the floor. The human operator from the out-of-cell performs a series of decontamination tasks remotely by manipulating decontamination systems located in-cell via a handcontroller with the aid of vision feedback information. The environmental, functional and mechanical design considerations, control system and capabilities of the remotely operated decontamination systems at a high radioactive environment are also described.

  • PDF

Design and Graphic Simulation of a Cleaning Robot for a Radioactive Environment Application

  • Kim, K.;Park, J.;M. Yang;C. Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.3-161
    • /
    • 2001
  • This paper describes design features of a cleaning robot for use in a radioactive zone of the Isolation room of the Irradiated Material Examination Facility (IMEF) at Korea Atomic Energy Research Institute (KAERI). This cleaning robot is intended to completely eliminate human interaction with hazardous radioactive contaminants. The clean ing robot that is operated either by manual mode or by autonomous mode is designed to be capable of cleaning the isolation room´s floor surface and collecting dry nuclear fuel debris and other radioactive waste placed on the floor. The functional, mechanical and electrical design considerations of the cleaning robot in terms of remote cleanup operation and remote maintenance at a radioactive environment are presented. A graphical representation of the cleaning ...

  • PDF

A Teleoperated Cleaning Robot for a High Radioactive Environment

  • Kim, Ki-Ho;Park, Jang-Jin;Yang, Myung-Seung;Oh, Chae-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.849-854
    • /
    • 2003
  • The Korea Atomic Energy Research Institute has developed a teleoperated cleaning robot for use in the radioactive zone of the isolation room of the Irradiated Material Examination Facility where direct human access to the interior is strictly limited. The teleoperated cleaning robot that was designed to completely eliminate human interaction with the hazardous radioactive contaminants has five remotely replaceable submodules - a mobile module for navigation, a cleaning module for dislodging and sucking contaminated waste, a sensing module for obstacle avoidance, a collection module for storing the acquired waste, and a cover module for protecting the collection module. This cleaning robot is capable of cleaning the contaminated floor surface of the isolation room and collecting loose dry spent nuclear fuel debris and other radioactive waste fixed or scattered on the floor surface. The developed cleaning robot is operated either by a manual control or by autonomous control in conjunction with a graphical simulator, by which the human operator can monitor and intervene the robot performing cleanup tasks in the isolation room. In this paper, we present the mechanical and environmental design considerations and development of the teleoperated cleaning robot for radioactive isolation room use. We also demonstrate its mock-up performance test results from the viewpoint of a remote cleanup operation and remote maintenance.

  • PDF

Assessment of Occupational Health Risks for Maintenance Work in Fabrication Facilities: Brief Review and Recommendations

  • Dong-Uk Park;Kyung Ehi Zoh;Eun Kyo Jeong;Dong-Hee Koh;Kyong-Hui Lee;Naroo Lee;Kwonchul Ha
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.87-95
    • /
    • 2024
  • Background: This study focuses on assessing occupational risk for the health hazards encountered during maintenance works (MW) in semiconductor fabrication (FAB) facilities. Objectives: The objectives of this study include: 1) identifying the primary health hazards during MW in semiconductor FAB facilities; 2) reviewing the methods used in evaluating the likelihood and severity of health hazards through occupational health risk assessment (OHRA); and 3) suggesting variables for the categorization of likelihood of exposures to health hazards and the severity of health effects associated with MW in FAB facilities. Methods: A literature review was undertaken on OHRA methodology and health hazards resulting from MW in FAB facilities. Based on this review, approaches for categorizing the exposure to health hazards and the severity of health effects related to MW were recommended. Results: Maintenance workers in FAB facilities face exposure to hazards such as debris, machinery entanglement, and airborne particles laden with various chemical components. The level of engineering and administrative control measures is suggested to assess the likelihood of simultaneous chemical and dust exposure. Qualitative key factors for mixed exposure estimation during MW include the presence of safe operational protocols, the use of air-jet machines, the presence and effectiveness of local exhaust ventilation system, chamber post-purge and cooling, and proper respirator use. Using the risk (R) and hazard (H) codes of the Globally Harmonized System alongside carcinogenic, mutagenic, or reprotoxic classifications aid in categorizing health effect severity for OHRA. Conclusion: Further research is needed to apply our proposed variables in OHRA for MW in FAB facilities and subsequently validate the findings.

Guidelines for dental clinic infection prevention during COVID-19 pandemic (코로나 바이러스 대유행에 따른 치과 의료 관리 가이드라인)

  • Kim, Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Dental settings have unique characteristics that warrant specific infection control considerations, including (1) prioritizing the most critical dental services and provide care in a way that minimizes harm to patients due to delayed care, or harm to personnel from potential exposure to persons infected with the COVID-19 disease, and (2) proactively communicate to both personnel and patients the need for them to stay at home if sick. For health care, an interim infection prevention and control recommendation (COVID-19) is recommended for patients suspected of having coronavirus or those whose status has been confirmed. SARS-CoV-2, which is the virus that causes COVID-19, is thought to be spread primarily between people who are in close contact with one another (within 6 feet) through respiratory droplets that are produced when an infected person coughs, sneezes, or talks. Airborne transmission from person-to-person over long distances is unlikely. However, COVID-19 is a new disease, and there remain uncertainties about its mode of spreads and the severity of illness it causes. The virus has been shown to persist in aerosols for several hours, and on some surfaces for days under laboratory conditions. COVID-19 may also be spread by people who are asymptomatic. The practice of dentistry involves the use of rotary dental and surgical instruments, such as handpieces or ultrasonic scalers, and air-water syringes. These instruments create a visible spray that can contain particle droplets of water, saliva, blood, microorganisms, and other debris. While KF 94 masks protect the mucous membranes of the mouth and nose from droplet spatter, they do not provide complete protection against the inhalation of airborne infectious agents. If the patient is afebrile (temperature <100.4°F)* and otherwise without symptoms consistent with COVID-19, then dental care may be provided using appropriate engineering and administrative controls, work practices, and infection control considerations. It is necessary to provide supplies for respiratory hygiene and cough etiquette, including alcohol-based hand rub (ABHR) with 60%~95% alcohol, tissues, and no-touch receptacles for disposal, at healthcare facility entrances, waiting rooms, and patient check-ins. There is also the need to install physical barriers (e.g., glass or plastic windows) in reception areas to limit close contact between triage personnel and potentially infectious patients. Ideally, dental treatment should be provided in individual rooms whenever possible, with a spacing of at least 6 feet between the patient chairs. Further, the use of easy-to-clean floor-to-ceiling barriers will enhance the effectiveness of portable HEPA air filtration systems. Before and after all patient contact, contact with potentially infectious material, and before putting on and after removing personal protective equipment, including gloves, hand hygiene after removal is particularly important to remove any pathogens that may have been transferred to the bare hands during the removal process. ABHR with 60~95% alcohol is to be used, or hands should be washed with soap and water for at least 20 s.