• Title/Summary/Keyword: Debris barrier

Search Result 29, Processing Time 0.029 seconds

Hazard Prevention Using Multi-Level Debris Flow Barriers (다단식(多段式) 유연성 토석류 방지시설에 관한 적용성 검토 연구)

  • Baek, Yong;Choi, Youngchul;Kwon, Oil;Choi, Seungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.15-23
    • /
    • 2010
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and railway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched. Furthermore debris flows are very hard to predict. Flexible Ring net barriers are multi-functional mitigation devices commonly applied to rock fall or floating wood protection in floods, snow avalanches and also mud flows or granular debris flows, if properly dimensioned for the process or processes for which they are intended. Overtopping of the barriers by debris flows and sediment transport is possible, supporting the design concept that a series of barriers may be used to stop volumes of debris larger than are possible using only one barrier. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

Study on Landscape Preference of Debris Barriers Types (사방댐의 유형별 경관선호 분석)

  • Lee, Sang-Won;Kang, Mi-Hee;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.283-291
    • /
    • 2011
  • The purpose of this study was to identify the public's preferences of different types of debris barriers and the impacts of construction materials, design, size, and planting on landscape preferences. On-site survey was carried out in Mt. Palgong during on December, 2009 and a total 122 visitors' data were analyzed. A total of 82 students Yeungnam and Donga University were also questioned in the classes during on December, 2009. Survey results showed that the debris barrier constructed with natural materials such as stone were more preferred and the level of planting around the debris barrier impacted most on the landscape preferences. The results imply that the importance of eco-friendly construction materials and methods has been increased in term of not only environmental conservation but also people's preferences. Therefore, the factors for enhancing landscape of debris barrier should be considered synthetically in terms of construction material, design, size, and planting level.

Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙단면 에코필라 사방댐의 비선형 충돌해석)

  • Kim, Hyun-Gi;Kim, Bum-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.430-439
    • /
    • 2019
  • In this study, a nonlinear impact analysis was performed to evaluate the safety and damage of an eco-pillar debris barrier with a hollow cross-section, which was proposed to improve constructability and economic efficiency. The construction of concrete eco-pillar debris barriers has increased recently. However, there are no design standards concerning debris barriers in Korea, and it is difficult to find a study on performance evaluations in extreme environments. Thus, an analysis of an eco-pillar debris barrier was done using the rock impact speed, which was estimated from the debris flow velocity. The diameters of rocks were determined by ETAG 27. The impact position, angles, and rock diameter were considered as variables. A concrete nonlinear material model was applied, and the estimation of damage was done by ABAQUS software. As a result, the damage ratio was found to be less than 1.0 at rock diameters of 0.3 m and 0.5 m, but it was 1.39 when the diameter was 0.7 m. This study could be used as basic data on impact force in the design of the cross section of an eco-pillar debris barrier.

Development of Restoration Measures of the Rockily Eroded Mountains in Seoul Metropolitan Area (수도권 지역내 암반황발산지의 안정녹화공법 개발에 관한 연구)

  • 우보명
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 1987
  • In Seoul metropolitan area, rockily denuded fores lands are widely distributed. Out of the rock-exposed hillslopes, Kwanak-Samsung mountains and Bookhan-Dobong mountains areas are the most severely eroded land at present To develope the rehabilitation measures for the rock-exposed hillslopes, it is essentially required that mechanisms of rock debris production and movement from the rock-exposed hillslopes should be studied. And also, suitable experiments for planting techniques should be practised at the field level. In this context, some experiments for the on-site fixation of the unstable stone-debris including plantation establishments on the rock-exposed hillslopes, have been carried out for 4 years from 1983 to 1986 at Kwanak mountain hillslopes. The results may be summarized as follows : 1) The soil environment-tolerable tree species for plantation extablishment on rock-exposed hillslopes include Buxus microphylla var. koreana, Forsythia koreana, Juniperus chinensis var. sargentii, Alnus hirsuta and Pinus rigida. These trees have, however, been showed fairly good growth performence at the places having more than about 30cm of soul layer depth above rock-bed. 2) In raising of seedlings to plant on the rock-exposed hillslopes, containerized seedling practices knave been appeared as the most adoptable measures. 3) In fixation of the unstable stole debris-and-sands on the on-site of rock. exposed hillslopes, the stone-lined barrier measures are more effective at comparatively large-sized places of rock-exposed hillslopes while the stone-bowed barrier measures are more effective at small-sifted isolated sold-debris places. The stone-buttressed terraces measures are more effective at the soil-composed hillslopes rather than rock-exposed hillslopes.

  • PDF

Effects of Debris Barrier on Community Structure and Functional Feeding Groups of the Benthic Macroinvertebrate (사방공작물의 시공이 저서성대형무척추동물의 군집구조 및 섭식기능군에 미치는 영향)

  • Seo, Jun-Pyo;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.480-487
    • /
    • 2012
  • This study was conducted to search the effects of debris barrier on the benthic macroinvertebrate. Gimcheon was selected as the survey site as it has relatively stable ecosystem with constantly running water. The survey was conducted 6 times before and after the construction of debris barrier from February in 2009 to October in 2010. In the first survey before construction, the identified species were 36 species belonged to 22 families, 9 order, 4 class, and 4 phylum. The figure slightly decreased to 30 species belonged to 18 families, 7 order, 2 class, and 2 phylum in the sixth survey after construction. Before construction, occupation ratio of EPT taxa was showed in the following order: Ephemeroptera (50.0%, 85.0%), Trichoptera (35.3%, 10.0%), and Plecopteran (14.8%, 5.0%). After construction, it was showed in the following order: Trichoptera (50.3%, 68.0%), Ephemeroptera (42.1%, 29.4%), and Plecopteran (7.5%, 2.7%). Ephemeroptera was the highest before construction. Trichoptera increased rapidly after construction. The Diversity, Richness, Evenness, and Dominance indices were all turned low in the second survey right after the construction. However, each index tended to increase with the course of time. In Functional Feeding Groups, GC type was the highest of 60.7% before construction. After construction, SC(53.1%) and FC(35.4%) increased rapidly and they became stabilized since the third survey. The result of this study reveals that debris barrier greatly affects the Aquatic Ecosystem right after its construction, but the system becomes stable and returns to normal with the course of time (about 18 months). Therefore, the study considering various influence factors such as time is required to recover completely through further long-term monitoring.

Suggestion on the Dredging Time of Sediments Behind Debris Barrier Using Rainfall Data (강우자료를 이용한 사방댐 배면 퇴적물의 준설시기 선정)

  • Song, Young-Suk;Kim, Minseok;Jung, In-Keun
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The rainfall intensity-duration curve (I-D curve) was used for selecting the dredging time of sediments behind a debris barrier which is located at the study area in Inje-gun, Kangwon Province. The I-D curve was newly suggested by using the data of rainfall-induced landslides for about 30 years from June to September in Kangwon Province. According to the monitoring results, the landslides have been not occurred during the monitoring period of the dredged sediments management system at the study area, and also all of the rainfall events were located below the I-D curve. The weight of the dredged sediments measured at the management system in the field was increased but the weight increment was small. It means that the increase of the dredged sediments was not the effect of landslide but the effect of soil erosion at the ground surface due to heavy rainfall. The weight of the dredged sediments behind a debris barrier could be known in real time using the rainfall data measured at the management system. Also, when the I-D curve is used with the management system, it is possible to select the optimum dredging time for sediments behind debris barrier.

Case Study for Efficiency of Counter-Debrisflow Structures in Baekyang Mt. (토석류 방재구조물 성능 검토 수치해석 - Case study: 부산 백양산)

  • Jeong, Seokil;Song, Chag Geun;Kim, Hong Taek;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.84-89
    • /
    • 2018
  • The number of landslides has increased since the 2000s due to the increased frequency of heavy rainfall caused by abnormal weather. A variety of debris flow prevention facilities have been installed as a countermeasure against this problem. However, it is not easy to evaluate the efficiency of debris flow prevention structures except for the structures with constant volume such as the erosion dam, because the other structures are limited to be reproduced in simulation program for debris flow. Therefore, the methods by which the debris flow prevention structures were modeled were proposed, and the efficiency of four prevention structures installed in Baekyang Mt. in Busan was evaluated with UDS, which accuracy had been verified, using these methods. The initial amount of debris flow was determined based on landslide which occurred in 2014, and specifications of the complex retaining walls around the settlements were measured and applied modeling for terrain. The numerical results showed that the efficiency of debris flow prevention structures could be quantitatively presented. Among the debris flow prevention structures installed in Baekyang Mt., prevention structure of barrier type for debris flow was the most efficiency and debris flow prevention device was the lowest efficiency when the only depth of debris was evaluated. It seems that this study is meaningful to propose the methods which were used to model the debris flow prevention structures that could not be reproduced in most 2D debris flow numerical analysis programs. If precise verification of the presented methods is carried out, it will be possible to provide clear criteria for the efficiency evaluation method of disaster prevention structures.

Flexible Barrier System for Rockfall Protection (유연성 방호책을 이용한 철도변 낙석방호사례)

  • 최승일;유병옥;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.103-116
    • /
    • 2003
  • Rockfall Protection fence is one of the most common rockfall Protection methods in Korea. If rockfall protection fences are required along the road or railway, their location, height and capacity, in terms of the maximum kinetic energy that they can absorb, should be specified. Within this paper, the best practice of rockfall barrier is introduced. Modern rockfall simulations as a means to define risks, protection requirements, dynamic loading and height of potential structures and selection of appropriate placement is presented. Technical possibilities of rockfall barriers and their actual limits are presented. Safety concepts based on probabilistic approaches are proposed. Recent studies peformed in other countries show that Flexible Barriers are also a feasible system to stop and retain debris flows. Finally an outlook onto further development is given.

  • PDF

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

Flexible Barrier System for Rockfall Protection (유연성 원리를 이용한 낙석방호시스템)

  • Choi Seung-Il;Lee Chang-Ho;Kim Duk-Bong
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.68-81
    • /
    • 2003
  • Rockfall protection fence is one of the most common rockfall protection methods in Korea. If rockfall protection fences are required along the road or railway, their location, height and capacity, in terms of the maximum kinetic energy that they can absorb, should be specified. Within this paper, the best practice of rockfall barrier is introduced. Modern rockfall simulations as a means to define risks, protection requirements, dynamic loading and height of potential structures and selection of appropriate placement is presented. Technical possibilities of rockfall barriers and their actual limits are presented. Safety concepts based on probabilities approaches are proposed. Recent studies performed in other countries show that Flexible Barriers are also a feasible system to stop and retain debris flows. Finally an outlook onto further development is given.

  • PDF