• Title/Summary/Keyword: Debris Survivability

Search Result 7, Processing Time 0.017 seconds

Development of Survivability Analysis Program for Atmospheric Reentry (지구 재진입 파편 생존성 분석 프로그램 개발)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Chung, Eui-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.156-165
    • /
    • 2015
  • A survivability-analysis program has been developed to analyze the ground collision risk of atmospheric reentry objects, such the upper stages of a launch vehicle or satellites, which move at or near the orbital velocity. The aero-thermodynamic load during the free fall, the temperature variation due to thermal load, and the phase shift after reaching the melting point are integrated into the 3 degree-of-freedom trajectory simulation of the reentry objects to analyze the size and weight of its debris impacting the ground. The analysis results of the present method for simple-shaped objects are compared with the data predicted by similar codes developed by NASA and ESA. Also, the analysis for actual reentry orbital objects has been performed, of which results are compared with the measurement data.

Re-entry Survivability and On-Ground Risk Analysis of Low Earth Orbit Satellite (저궤도 위성의 대기권 재진입 시 생존성 및 피해확률 분석)

  • Jeong, Soon-Woo;Min, Chan-Oh;Lee, Mi-Hyun;Lee, Dae-Woo;Cho, Kyeum-Rae;Bainum, Peter M.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.158-164
    • /
    • 2014
  • LEO(Low Earth Orbit) Satellite which is discarded should be reentered to atmosphere in 25 years by '25 years rule' of IADC(Inter-Agency Space Debris Coordination Committee) Guidelines. If the parts of satellite are survived from severe aerothermodynamic condition, it could damage to human and property. South Korea operates KOMPSAT-2 and STSAT series as LEO satellite. It is necessary to dispose of them by reentering atmosphere. Therefore this paper analyze the trajectory, survivability, casualty area and casualty probability of a virtual LEO satellite using ESA(European Space Agency)'s DRAMA(Debris Risk Assesment and Mitigation Analysis) tool. As a result, it is noted that casuality area is $15.2742m^2$ and casualty probability is 5.9614E-03 then will be survived 198.831kg.

A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris Using SPH Technique (SPH 기법을 이용한 고속충돌 파편의 운동에너지와 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.457-467
    • /
    • 2016
  • In this study, we investigate the dispersion behavior of debris and debris cloud generated by high-velocity impacts using the smoothed particle hydrodynamics (SPH) technique. The projectile and target plate were made of aluminum, and we confirm the validity of the SPH technique by comparing the measured major and minor axis lengths of the debris cloud in the reference with the predicted values obtained through the SPH analysis. We perform high-velocity impact and fracture analysis based on the verified SPH technique within the velocity ranges of 1.5~4 km/s, and we evaluate the dispersion behavior of debris induced by the impact in terms of its kinetic energy. The maximum dispersion radius of the debris on the witness plates located behind the target plate was increased with increasing impact velocity. We derive an empirical equation that is capable of predicting the dispersion radius, and we found that 95% of the total kinetic energy of the debris was concentrated within 50% of the maximum dispersion radius.

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

A Study of the Disposal Maneuver Planning for LEO Satellite (저궤도 위성의 폐기기동 계획 연구)

  • Seong, Jae-Dong;Kim, Hae-Dong;Choi, Ha-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.352-362
    • /
    • 2016
  • In this paper, a disposal maneuver which complies the space debris mitigation guideline was analysed for KOMPSAT-2 as an example of LEO satellite. Definition of disposal altitude which comply the '25 year rule', re-entry survivability analysis of KOMPSAT-2 parts inside and casualty area analysis were performed using STK and ESA's DRAMA. Finally, assuming that there were several survival objects during uncontrolled re-entry stage, the re-entry initial orbit elements which show the low casualty probability were found even if there were various uncertainties about the initial orbit. As a result, KOMPSAT-2 should be descended its altitude at least 43km or up to 105km to comply '25 year rule' and there were heavy or heat resistant survival objects which generated $4.3141m^2$ casualty area. And if RAAN of re-entry initial orbit was 129 degree, total casualty probability was lower than standard value of space debris mitigation guideline even if there were uncertainties about the initial orbit.

Analyses for Re-entry Event and Survival characteristics according to Characters of Re-entering Space Objects (지구 재진입체의 특성에 따른 재진입사례 및 생존특성 분석)

  • Jeong, Soon-Woo;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.80-89
    • /
    • 2013
  • The amount of object which reenter the Earth's atmosphere has been increasing after the Sputnik I launch in October 1957. Most of reentry objects were incinerated by aerodynamic heating so they hardly survive. But they may incur casualties and widespread property damages if they survive and fall to surface. The amount of reentry objects, such as Satellite, Rocket Booster, Pressure Tank, ISS shows continued growth as byproduct of space activities. Most of the re-entry objects are incinerated at between altitude of 50km~80km and 10%~40% of the objects are surviving and falling to the ground. Therefore, this paper try to piece together the reentry event and analysis the survival characteristics of re-entry object.

Study of the Post Mission Disposal Maneuver for KOMPSAT-2 (다목적실용위성 2호의 폐기기동 연구)

  • Seong, Jaedong;Jung, Okchul;Chung, Daewon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1037-1048
    • /
    • 2018
  • In this paper, we investigated the international guidelines and actual disposal maneuver cases to prepare KOMPSAT-2 post mission disposal. And then, disposal maneuver plan was established using current propellant of KOMPSAT-2 and verification was also performed to find out whether the international guidelines are satisfied. As a result, the lifetime of KOMPSAT-2 was 3.6 years when 45kg propellant was used to decrease perigee altitude to 300km. And if more than 14.5kg propellant consumed for same strategy, KOMPSAT-2 can satisfy the international guidelines. Finally, re-entry survivability analysis was performed and it represented that heat resistant objects, such as propellant tank and reaction wheel, could be survived but total ground casualty probability was less than international guidelines.