DOI QR코드

DOI QR Code

Study of the Post Mission Disposal Maneuver for KOMPSAT-2

다목적실용위성 2호의 폐기기동 연구

  • Received : 2018.10.04
  • Accepted : 2018.11.05
  • Published : 2018.12.01

Abstract

In this paper, we investigated the international guidelines and actual disposal maneuver cases to prepare KOMPSAT-2 post mission disposal. And then, disposal maneuver plan was established using current propellant of KOMPSAT-2 and verification was also performed to find out whether the international guidelines are satisfied. As a result, the lifetime of KOMPSAT-2 was 3.6 years when 45kg propellant was used to decrease perigee altitude to 300km. And if more than 14.5kg propellant consumed for same strategy, KOMPSAT-2 can satisfy the international guidelines. Finally, re-entry survivability analysis was performed and it represented that heat resistant objects, such as propellant tank and reaction wheel, could be survived but total ground casualty probability was less than international guidelines.

본 연구에서는 다목적실용위성 2호의 폐기시점에 대비하여 국제규정, 수행사례를 분석하였고, 현재 다목적실용위성 2호에 탑재된 추진제를 이용하여 폐기기동 계획을 수립하여 국제규정을 만족하는지 여부를 확인하였다. 분석 결과 45kg의 추진제를 이용하여 위성의 근지점을 300km 낮추는 폐기기동을 수행할 경우 3.6년의 궤도수명을 가지는 것으로 나타났고, 동일한 방식을 적용하여 14.5kg 이상의 추진제를 사용하여 고도를 낮추는 경우 국제규정을 만족할 수 있는 것으로 나타났다. 또한 다목적실용위성 2호의 재진입 생존률 분석을 수행하였고, 그 결과 내열성이 높은 추진제탱크나 반작용 휠의 일부가 생존하여 지상에 낙하하는 것으로 나타났으나 지상피해확률 측면의 국제규정을 충분히 만족하는 것으로 나타났다.

Keywords

References

  1. Nishida, S. I., Kawamoto, S., Okawa, Y., Terui, F., and Kitamura, S., "Space debris removal system using a small satellite," Acta Astronautica, Vol. 65(1-2), 2009, pp.95-102. https://doi.org/10.1016/j.actaastro.2009.01.041
  2. Shan, M., Guo, J., and Gill, E., "Deployment dynamics of tethered-net for space debris removal," Acta Astronautica, Vol. 132, 2017, pp.293-302. https://doi.org/10.1016/j.actaastro.2017.01.001
  3. Asher, Z. D., Tragesser, S., Kneubel, C., Hudson, J., Bradley, T. H., and Kolmanovsky, I., "Space Debris Field Removal Using Tether Momentum Exchange," Astrodynamics Specialist Conference, 2018.
  4. Wen, Q., Yang, L., Zhao, S., Fang, Y., Wang, Y., and Hou, R., "Impacts of orbital elements of space-based laser station on small scale space debris removal," Optik-international Journal for Light and Electron Optics, Vol. 154, 2018, pp.83-92. https://doi.org/10.1016/j.ijleo.2017.10.008
  5. Kanazaki, M., Yamada, Y., and Nakamiya, M., "Trajectory optimization of a satellite for multiple active space debris removal based on a method for the traveling serviceman problem. In Intelligent and Evolutionary Systems (IES)," 21st Asia Pacific Symposium on IEEE, 2017, pp.61-66.
  6. Zhang, F., Huang, P., Meng, Z., and Liu, Z., "Dynamics modeling and model selection of space debris removal via the Tethered Space Robot", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 231, No. 10, 2017, pp.1873-1897. https://doi.org/10.1177/0954410016664914
  7. Roth, K., Swenson, E., and Hess, J., "Analysis of an Experimental Space Debris Removal Mission," AIAA SPACE and Astronautics Forum and Exposition, 2017, pp.5346.
  8. Seong, J. D., Min, C. O., Jeong, S. W., Lee, D. W., Cho, K. R., and Kim, H. D., "Removal trajectory generation for LEO satellites and analysis collision probability during removal maneuver," Journal of the Korean Society for Aeronautical and Space Science, Vol. 40, No. 4, 2012, pp.354-363. https://doi.org/10.5139/JKSAS.2012.40.4.354
  9. Seong, J. D., Choi, H. Y., and Kim, H. D., "A Study of the Disposal Maneuver Planning for LEO Satellite," Journal of the Korean Society for Aeronautical and Space Science, Vol. 44, No. 4, 2016, pp.352-362. https://doi.org/10.5139/JKSAS.2016.44.4.352
  10. Seong, J. D., Kim, H. D., and Choi, H. Y., "A study of a target identification method for an active debris removal system," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 231, No. 1, 2017, pp.180-189. https://doi.org/10.1177/0954410016662065
  11. Inter-Agency Space Debris Coordination Committee., "IADC space debris mitigation guidelines," 2007.
  12. Yakovlev, M., "The IADC Space Debris Mitigation Guidelines and Supporting Documents," 4th European Conference on Space Debris, Vol. 587, Aug. 2005, pp.591.
  13. Walker, R., and Martin, C. E., "Cost-effective and robust mitigation of space debris in low earth orbit," Advances in Space Research, Vol. 34, No. 5, 2004, pp.1233-1240. https://doi.org/10.1016/j.asr.2003.03.037
  14. "NASA Safety Standard: Guidelines and Assessment Procedures for Limiting Orbital Debris," NSS 1740.14 edition, Aug. 1995.
  15. "CNES Exigence de Securite - Debris Spatiaux: Methode et Procedure," MPM-51-00-12, issue 1-revision 0 edition, Apr. 1999.
  16. "European space debris safety and mitigation standard," issue 1, revision 3, Nov. 2001.
  17. "NASDA Space Debris Mitigation Standard", NASDA-STD-18, Original Issue: 28 Mar. 1996.
  18. "Russian Aviation & Space Agency (RASA) Branch Standard - General Requirements for Mitigation of Space Debris Population," Jul. 2000.
  19. "US Government Orbital Debris Mitigation Standard Practices," Dec. 1997
  20. Walker, R., Klinkrad, H., Sdunnus, H., and Stokes, H., "Update of the ESA space debris mitigation handbook. In Space Debris," Vol. 473, Oct. 2001, pp.821-826.
  21. "Orbital Debris Quarterly News," Vol. 14, Issue 4, Oct. 2010.
  22. Monheim, A., Pritikin, L., Weiss, M., Mayer, G., Mitchell, S., San Juan, G., and Miller, K., "GFO: Disposal of a Power-Challenged Satellite with an Attitude (Control) Problem," AIAA Space 2009 Conference & Exposition, 2009, pp.6420.
  23. "Orbital Debris Quarterly News," Vol. 16, Issue 1, Jan. 2012.
  24. KARI., "KOMPSAT-2 Bus Development and Integration Report (II)," Aug. 2001.