• 제목/요약/키워드: Debris Bed Formation

검색결과 5건 처리시간 0.016초

Investigation of flow regime in debris bed formation behavior with nonspherical particles

  • Cheng, Songbai;Gong, Pengfeng;Wang, Shixian;Cui, Jinjiang;Qian, Yujia;Zhang, Ting;Jiang, Guangyu
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.43-53
    • /
    • 2018
  • It is important to clarify the characteristics of flow regimes underlying the debris bed formation behavior that might be encountered in core disruptive accidents of sodium-cooled fast reactors. Although in our previous publications, by applying dimensional analysis technique, an empirical model, with its reasonability confirmed over a variety of parametric conditions, has been successfully developed to predict the regime transition and final bed geometry formed, so far this model is restricted to predictions of debris mixtures composed of spherical particles. Focusing on this aspect, in this study a new series of experiments using nonspherical particles have been conducted. Based on the knowledge and data obtained, an extension scheme is suggested with the purpose of extending the base model to cover the particle-shape influence. Through detailed analyses and given our current range of experimental conditions, it is found that, by coupling the base model with this scheme, respectable agreement between experiments and model predictions for the regime transition can be achieved for both spherical and nonspherical particles. Knowledge and evidence from our work might be utilized for the future improvement of design of an in-vessel core catcher as well as the development and verification of sodium-cooled fast reactor severe accident analysis codes in China.

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • 제23권2호
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

옥천지향사대 내 수안보-수산 지역에 분포하는 함력천매암질암 기질의 화학 조성과 탄산염암의 안정동위원소 연구 (Geochemical and Stable Isotopic Studies of the Matrix of Pebble Bearing Phyllitic Rocks and Carbonate Rocks from the Suanbo and Susanri District in the Okchon Geosynclinal Zone)

  • 김규한;민경덕
    • 자원환경지질
    • /
    • 제29권1호
    • /
    • pp.25-33
    • /
    • 1996
  • Stable isotopic ratios of the carbonate rocks and chemical compositions of the matrix of pebble bearing phyllitic rocks known as the Hwanggangri Formation, which are in hot debate on their origin such as tillite, debris flow and turbidite, were determined to interpret their depositional environment. Argillaceous matrix of the pebble bearing phyllitic rocks has a high content of CaO (av. 19.5%) and MgO (av. 8.3%), corresponding to calcareous sandy shale. No difference of chemical compositions including trace elements and REE is in the matrices between the Hwanggangri and the Kunjasan Formations. Carbonate rocks from the Okchon zone and outside of the zone range $-2.5{\sim}+6.1$‰ in ${\delta}^{13}C$ and $+5.8{\sim}+25.9$‰ in ${\delta}^{18}O$, indicating normal marine limestone. However, unusally $^{13}C$ enriched carbonate rocks might be deposited in the highly evaporated sedimentary basin. A wide variation of ${\delta}^{18}O$ values is responsible for metamorphism with a $^{18}O$ depleted meteoric water. Isotopic equilibrium temperatures by graphite-calcite geothermometer show a higher metamorphic temperature ($547{\sim}589^{\circ}C$) in the Okchon zone than those ($265{\sim}292^{\circ}C$) in the Samtaesan Formation of the Chosun group. Rhythmic alternation of relatively thin shale with thin limestone in the Kounri Formation is not cherty layer but thin limesilicate bed by metasomatic replacement. Judging from the isotopic and chemical compositions of the carbonate rocks and calcareous matrix of the pebble bearing phyllitic rocks, the Hwangganari Formation was deposited in the shallow marine environment favorable to debris flow.

  • PDF

칠레 남부 라고 소피아 (Lago Sofla) 심해저 하도 역암의 층구조와 퇴적 스타일 (Architecture and Depositional Style of Gravelly, Deep-Sea Channels: Lago Sofia Conglomerate, Southeyn Chile)

  • 최문영;조형래;손영관;김예동
    • 한국석유지질학회지
    • /
    • 제10권1_2호
    • /
    • pp.23-33
    • /
    • 2004
  • 칠레 남부에 분포하는 라고 소피아 역암 (후기 백악기)은 이암이 우세한 심해 퇴적층 (Cerro Toro Formation) 내에 렌즈상으로 산출하고 남북방향으로 120 km 이상 연장된다. 라고 소피아 역암은 융기대전면분지 (foreiand basin)인 마젤란 분지의 융기대전면곡분 (foredeep trough)을 따라 발달한 심해저 하도계 퇴적층으로 해석된다. 이처럼 연장이 대단히 좋은 역질의 심해저 하도가 발달하는 것은 현생 심해저 환경에서 매우 드문 현상으로 라고 소피아 역암은 퇴적학적으로 매우 흥미로운 예이다. 연구지역의 북부에 분포하는 라고 소피아 역암은 이암 퇴적층 사이에 협재하는 3-5매의 역암체로 구성되고, 고수류 측정에 따르면 퇴적물은 동, 남, 남동 방향으로 운반된 것으로 유추된다. 이 역암체는 융기대전면곡분의 서편에 위치한 해저사면을 따라 발달한 심해저 하도계의 지류에서 퇴적된 것으로 해석되며, 지류들은 남북방향의 주하도로 수렴하였을 것으로 추정된다. 남부 지역의 라고 소피아 역암은 300 m 이상의 두께를 가지는 역암체로 구성되고, 남북방향으로 긴 융기대전면분지의 축을 따라 발달한 주하도에서 퇴적된 것으로 해석된다. 이 역암체는 층리를 보이는 역암, 괴상 혹은 점이층리의 역암, 기질지지 역암으로 구성되며, 각각은 저탁류에 의한 밑짐 운반, 고밀도 저탁류, 니질 암설류에 의해 퇴적된 것으로 해석된다. 층리역암에서 측정된 고수류 방향은 남남서항으로 주하도의 방향을 지시한다. 반면, 북부 및 남부 지역의 기질지지 역암에서 측정된 고수류 방향은 흔히 하도 방향에 대해 고각도를 이루는데, 이는 하도의 둑 또는 주변 사면이 붕괴하여 니질 암설류가 형성되었음을 지시한다. 형태구성 (architecture) 분석 결과, 라고 소피아 역암은 육상의 역질 망상하천 퇴적층과 유사한 구성요소로 구성되며, 라고 소피아 심해저 하도계는 망상하천과 유사한 지형적 특성을 지녔을 것으로 추정된다. 또한 하도 역암 내 큰 규모의 층구조는 동쪽으로 이동 누적된 특징을 보이는데, 이는 지구조 운동에 의해 주하도가 점진적으로 동쪽으로 이동하였을 가능성을 시사한다.

  • PDF

마젤란 분지의 백악기 심해저 하도 퇴적계의 퇴적상 및 진화 (Sedimentary Facies and Evolution of the Cretaceous Deep-Sea Channel System in Magallanes Basin, Southern Chile)

  • 최문영;손영관;조형래;김예동
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.385-400
    • /
    • 2004
  • The Lago Sofia Conglomerate encased in the 2km thick hemipelagic mudstones and thinbedded turbidites of the Cretaceous Cerro Toro Formation, southern Chile, is a deposit of a gigantic submarine channel developed along a foredeep trough. It is hundreds of meters thick kilometers wide, and extends for more than 120km from north to south, representing one of the largest ancient submarine channels in the world. The channel deposits consist of four major facies, including stratified conglomerates (Facies A), massive or graded conglomerates (Facies B), normally graded conglomerates with intraformational megaclasts (Facies C), and thick-bedded massive sandstones (Facies D). Conglomerates of Facies A and B show laterally inclined stratification, foreset stratification, and hollow-fill structures, reminiscent of terrestrial fluvial deposits and are suggestive of highly competent gravelly turbidity currents. Facies C conglomerates are interpreted as deposits of composite or multiphase debris flows associated with preceding hyperconcentrated flows. Facies D sandstones indicate rapidly dissipating, sand-rich turbidity currents. The Lago Sofia Conglomerate occurs as isolated channel-fill bodies in the northern part of the study area, generally less than 100m thick, composed mainly of Facies C conglomerates and intercalated between much thicker fine-grained deposits. Paleocurrent data indicate sediment transport to the east and southeast. They are interpreted to represent tributaries of a larger submarine channel system, which joined to form a trunk channel to the south. The conglomerate in the southern part is more than 300 m thick, composed of subequal proportions of Facies A, B, and C conglomerates, and overlain by hundreds of m-thick turbidite sandstones (Facies D) with scarce intervening fine-grained deposits. It is interpreted as vertically stacked and interconnected channel bodies formed by a trunk channel confined along the axis of the foredeep trough. The channel bodies in the southern part are classified into 5 architectural elements on the basis of large-scale bed geometry and sedimentary facies: (1) stacked sheets, indicative of bedload deposition by turbidity currents and typical of broad gravel bars in terrestrial gravelly braided rivers, (2) laterally-inclined strata, suggestive of lateral accretion with respect to paleocurrent direction and related to spiral flows in curved channel segments around bars, (3) foreset strata, interpreted as the deposits of targe gravel dunes that have migrated downstream under quasi-steady turbidity currents, (4) hollow fills, which are filling thalwegs, minor channels, and local scours, and (5) mass-flow deposits of Facies C. The stacked sheets, laterally inclined strata, and hollow fills are laterally transitional to one another, reflecting juxtaposed geomorphic units of deep-sea channel systems. It is noticeable that the channel bodies in the southern part are of feet stacked toward the east, indicating eastward migration of the channel thalwegs. The laterally inclined strata also dip dominantly to the east. These features suggest that the trunk channel of the Lago Sofia submarine channel system gradually migrated eastward. The eastward channel migration is Interpreted to be due to tectonic forcing imposed by the subduction of an oceanic plate beneath the Andean Cordillera just to the west of the Lago Sofia submarine channel.