• 제목/요약/키워드: Debris Analysis

검색결과 491건 처리시간 0.034초

산지유역 기반의 토석류 취약성 분석을 통한 재해방지 계획수립 연구 (Disaster Prevention Planning through Analysis of Debris Flow Vulnerability Based on Mountain Basin Features)

  • 김만일;이문세;홍관표
    • 지질공학
    • /
    • 제27권4호
    • /
    • pp.393-403
    • /
    • 2017
  • 최근 10년간(2005~2014) 산지재해 발생현황을 분석해 보면 산지재해 발생 총면적은 4,393 ha, 연평균 인명피해는 7명, 연평균 산지재해 복구비는 798억원으로 사회 경제적 피해가 발생하였다. 산지재해는 1차적으로 산지사면에서 산사태가 발생되어 2차적으로 계류를 따라 토석류로 이동 및 확산되면서 산지 하부지역의 시설지와 주거지에 피해를 발생시킨다. 이러한 산지재해의 발생원인은 자연적인 요인으로 태풍, 국지성 강우 등이 있으며, 인위적인 요인으로 산지 개발로 인한 산지지반의 훼손 등이 있다. 본 연구에서는 연구지역을 3개 유역으로 구획하고, 산지유역의 지형, 지질, 산림 특성을 고려하여 FLO-2D 분석 결과를 반영한 토석류 취약성 평가 방안을 제시하였다. 또한 잠재적 산지재해에 대한 조사, 분석, 평가 방안에 따라 산지사면 및 계류에 대한 취약성 분석을 통해 잠재적 산지재해의 발생 위험유역을 평가하였다. 이를 통해 산림유역 기반의 종합적인 재해방지시설 계획의 수립 방안을 제시하였다.

터널 갱구지역 사면안정성 및 산사태 위험도 평가 (Slope stability analysis and landslide hazard assessment in tunnel portal area)

  • 정해근;서용석
    • 한국터널지하공간학회 논문집
    • /
    • 제15권4호
    • /
    • pp.387-400
    • /
    • 2013
  • 본 연구에서는 터널 갱구사면을 대상으로 사면안정성 및 산사태 위험도를 평가하였다. 먼저 사면안정성 해석을 통해 붕괴위험도가 가장 높은 구간을 선정하고 구체적인 붕괴규모를 파악하였다. 해석결과 해발고도 485~495 m인 구간은 강우시 안전율이 0.99로 불안정한 상태로 나타났다. 이 때 붕괴심도는 최대 2.1 m이며 붕괴 길이는 사면의 경사방향으로 18.6 m로 분석되었다. 해당구간에서 사면붕괴 시 파생되는 사태물질의 이동특성을 실시간으로 분석하고 터널 갱구부에 미치는 영향을 파악하고자 산사태 시뮬레이션 해석을 수행하였다. 해석결과 사태물질은 7.74 m/sec의 평균속도를 보이며 주로 계곡부를 따라 산 하부로 이동하는 것으로 분석되었다. 사태물질은 산 하부로 갈수록 점차 확산되며 10초 후에 터널 갱구부 위를 지나고 20.2초 후에 산하부에 도달하는 것으로 분석되었다. 특히 터널 갱구부는 사태물질 이동경로의 중심부에 위치하고 있어 산사태 발생 시 직접적인 피해를 받는 것으로 나타났다.

Condition Monitoring을 이용한 초음속 항공기 엔진의 상태예측에 관한 연구 (A Study on the Prediction of Engine Condition of Supersonic Aircraft by the Condition Monitoring Technique.)

  • 정병학;정동윤
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 추계학술대회
    • /
    • pp.176-182
    • /
    • 1996
  • This paper describes an empherical equation which is to predict the engine condition of the supersonic aircraft. The equation, which is a function of running time of engine and engine oil, is derived from the trend analysis of JOAP data. Qualitative analysis is carried out to make up for the weak points in the current JOAP system. Also wear debris collected from the abnormal engine is analyzed by EDS to detect the damaged parts of engine.

  • PDF

유압피스톤 모터용 습동부재의 마모실험에 관한 연구 (A Study on the Wear Testing of Silding Members of Hydraulic Rotary Actuator)

  • 김광영;함영복;이태서
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.608-613
    • /
    • 1997
  • This study discusses the developmentof hydraulic rotary actuator design technology for industriol machinery and earthmoving equipment. The lubrication and wear analysis of sliding components of the machinery are very important parameters to sterngth the design technique. The analysis and were test are performed for the selected materials of the above mentioned coupled sliding members using the experimental results. One can selsct the better combination of sliding components.

  • PDF

한반도 서남부 암설사면지형의 분포가능성 예측 및 검증 (Prediction and Verification of Distribution Potential of the Debris Landforms in the Southwest Region of the Korean Peninsula)

  • 이성호;장동호
    • 한국지형학회지
    • /
    • 제27권2호
    • /
    • pp.1-17
    • /
    • 2020
  • This study evaluated a debris landform distribution potential area map in the southwest region of the Korean peninsula. A GIS spatial integration technique and logistic regression method were used to produce a distribution potential area map. Seven topographic and environmental factors were considered for analysis and 28 different data set were combined and used to get most effective results. Moreover, in an accuracy assessment, the extracted results of the Distribution Potential area were evaluated by conducting a cross-validation module. Block stream showed the highest accuracy in the combination No. 6, and that DEM (digital elevation model) and TWI (topographic wetness index) have relatively high influences on the production of the Block stream Distribution Potential area map. Talus showed the highest accuracy in the combination No. 13. We also found that slope, TWI and geology have relatively high influences on the production of the Talus Distribution Potential area map. In addition, fieldwork confirmed the accuracy of the input data that were used in this study, and the slope and geology were also similar. It was also determined that these input data were relatively accurate. In the case of angularity, the block stream was composed of sub-rounded and sub-angular systems and Talus showed differences according to the terrain formation. Although the results of the rebound strain measurement using a Schmidt's hammer did not shown any difference in topographic conditions, it is determined that the rebound strain results reflected the underlying geological setting.

초기 산사태 발생에 영향을 미치는 지형요소의 특성분석 (Analysis on the Characteristics of Geomorphological Features Affecting the Initial State of Landslides)

  • 차아름;김태훈
    • 한국지반공학회논문집
    • /
    • 제30권6호
    • /
    • pp.61-68
    • /
    • 2014
  • 본 연구는 실제 지형의 특성을 파악, 이를 초기 산사태 위험도 평가에 활용하는데 그 목적이 있다. 지형특성 분석을 위해 SINMAP과 통계적 기법인 평면도(Planarity)를 활용하였으며 이를 실제 산사태 발생지역에 적용, 지형 특성과 산사태 위험도와의 관계를 규명하고자 하였다. 분석결과는 제안한 두 가지 기법 모두 위험도가 높다고 평가한 지역에서는 초기 산사태 위험도가 상대적으로 높게 산정되었다. 이는 본 연구에서 제시한 방법이 지형특성과 산사태 위험도와의 관계성 규명에 있어 합리적임을 보여준다고 할 수 있다. 또한, 실제 현장조사 결과와 비교한 초기 산사태 위험도는 SINMAP 기법이 토석류와 같은 연속성 산사태에 있어 보다 정확하게 판단되었으나, 특정요소의 위험성을 구체적으로 고려할 수 있는 기법을 추가적으로 고려한다면 보다 정확한 초기 산사태 위험도를 평가할 수 있을 것으로 사료된다.

복식유물의 연구에 있어서 분광화학분석의 활용 (Application of Spectrochemical Analysis in the Study of Archaeological Textiles)

  • 안춘순
    • 복식
    • /
    • 제49권
    • /
    • pp.49-63
    • /
    • 1999
  • This research utilized the Energy Dispersive X-ray Spectroscopy(EDS) and the Inductively Coupled Plasma Mass Spectrometry in the analysis of chemical elements present among the textiles exhumed from Kupori Hwasung-kun Kyunggi-do. The two research objectives were: first to examine the elements present and their percent presence in Kupori samples: second to investigate whether the elements are part of mordant substances which could have been used when dyeing the KUpori textiles in the past. To meet such research purposes standard silk fabric was dyed with Sophorajaponica using alum and iron mordants. For alum mordant unpurified general alum and potassium aluminum sulfate(AlK(SO4)2). iron sulfate(FeSO4·7H2O) were used, From the results of EDS and ICP-Mass analysis the following conclusions were drawn. 1 According to the EDS analysis 9 elements Ca, S, Al, Si, K, Fe, P, Mg and Na were detected. 2. ICP-Mass result of the mordant chemicas showed high amount of A, Al and k present in alum mordants and S and Fe present in iron mordants. 3. Comparison of the ICP-Mass results of the mordant chemicals and those of the standard dyed samples suggested that the amount presence of Al and Fe is a strong indication of the usage of alum and iron mordants respecticely in an unknown dyed textile. 4, In the washed Kupori textiles Fe showed a relatively higher rate of presence in the samples Therefore it can be conjectured that those Kupori textiles were dyed with iron mordant based on the result of the above number 3. 5. It is probable that the other elements detected from the Kupori samples were incorporated into the textiles as part of the soil debris produced from the degradation of the dead within the coffin or the earth debris. They can also be part of the inorganic compounds inherent in the silk textiles themselves before dyed. 6. Among the elements it is likely that Ca which showed a high degree of presence among the unwashed samples was part of the inorganic compound inferent in the silk textiles.

  • PDF

Modelling land degradation in the mountainous areas

  • Shrestha, D.P.;Zinck, J.A.;Ranst, E. Van
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.817-819
    • /
    • 2003
  • Land degradation is a crucial issue in mountainous areas and is manifested in a variety of processes. For its assessment, application of existing models is not straightforward. In addition, data availability might be a problem. In this paper, a procedure for land degradation assessment is described, which follows a four-step approach: (1) detection, inventory and mapping of land degradation features, (2) assessing the magnitude of soil loss, (3) study of causal factors, and (4) hazard assessment by applying decision trees. This approach is applied to a case study in the Middle Mountain region of Nepal. The study shows that individual mass movement features such as debris slides and slumps can be easily mapped by photo interpretation techniques. Application of soil loss estimation models helps get insight on the magnitude of soil losses. In the study area soil losses are higher in rainfed crops on sloping terraces (highest soil loss is 32 tons/ha/yr) and minimal under dense forest and in irrigated rice fields (less than 1 ton/ha/yr). However there is high frequency of slope failures in the form of slumps in the rice fields. Debris slides are more common on south-facing slopes under rainfed agriculture or in degraded forest. Field evidences and analysis of causal factors for land degradation helps in building decision trees, the use of which for modelling land degradation has the advantage that attributes can be ranked and tested according to their importance. In addition, decision trees are simple to construct, easy to implement and very flexible in adaptations.

  • PDF

Multivariate analysis of the cleaning efficacy of different final irrigation techniques in the canal and isthmus of mandibular posterior teeth

  • Yoo, Yeon-Jee;Lee, WooCheol;Kim, Hyeon-Cheol;Shon, Won-Jun;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • 제38권3호
    • /
    • pp.154-159
    • /
    • 2013
  • Objectives: The aim of this study was to compare the cleaning efficacy of different final irrigation regimens in canal and isthmus of mandibular molars, and to evaluate the influence of related variables on cleaning efficacy of the irrigation systems. Materials and Methods: Mesial root canals from 60 mandibular molars were prepared and divided into 4 experimental groups according to the final irrigation technique: Group C, syringe irrigation; Group U, ultrasonics activation; Group SC, VPro StreamClean irrigation; Group EV, EndoVac irrigation. Cross-sections at 1, 3 and 5 mm levels from the apex were examined to calculate remaining debris area in the canal and isthmus spaces. Statistical analysis was completed by using Kruskal-Wallis test and Mann-Whitney U test for comparison among groups, and multivariate linear analysis to identify the significant variables (regular replenishment of irrigant, vapor lock management, and ultrasonic activation of irrigant) affecting the cleaning efficacy of the experimental groups. Results: Group SC and EV showed significantly higher canal cleanliness values than group C and U at 1 mm level (p < 0.05), and higher isthmus cleanliness values than group U at 3 mm and all levels of group C (p < 0.05). Multivariate linear regression analysis demonstrated that all variables had independent positive correlation at 1 mm level of canal and at all levels of isthmus with statistical significances. Conclusions: Both VPro StreamClean and EndoVac system showed favorable result as final irrigation regimens for cleaning debris in the complicated root canal system having curved canal and/or isthmus. The debridement of the isthmi significantly depends on the variables rather than the canals.

공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가 (Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment)

  • 알-마문;박현수;장동호
    • 한국지형학회지
    • /
    • 제26권3호
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.