• Title/Summary/Keyword: Debris Analysis

Search Result 491, Processing Time 0.034 seconds

Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors (가압중수로 압력관 이물질 프레팅 결함의 탄성 응력집중계수 수식 도출)

  • Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.167-175
    • /
    • 2014
  • If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis.

DEBRIS DISKS AND THE ZODIACAL LIGHT EXPLORED BY THE AKARI MID-INFRARED ALL-SKY SURVEY

  • Ishihara, Daisuke;Takeuchi, Nami;Kondo, Toru;Kobayashi, Hiroshi;Kaneda, Hidehiro;Inutsuka, Shu-ichiro;Oyabu, Shinki;Nagayama, Takahiro;Fujiwara, Hideaki;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2017
  • Debris disks are circumstellar dust disks around main-sequence stars. They are important observational clues to understanding the planetary system formation. The zodiacal light is the thermal emission from the dust disk in our Solar system. For a comprehensive understanding of the nature and the evolution of dust disks around main-sequence stars, we try a comparative study of debris disks and the zodiacal light. We search for debris disks using the AKARI mid-infrared all-sky point source catalog. By applying accurate flux estimate of the photospheric emission based on the follow-up near-infrared observations with IRSF, we have improved the detection rate of debris disks. For a detailed study of the structure and grain properties in the zodiacal dust cloud, as an example of dust disks around main-sequence stars, we analyze the AKARI mid-infrared all-sky diffuse maps. As a result of the debris disks search, we found old (>1 Gyr) debris disks which have large excess emission compared to their age, which cannot be explained simply by the conventional steady-state evolution model. From the zodiacal light analysis, we find the possibility that the dust grains trapped in the Earth's resonance orbits have increased by a factor of ~3 in the past ~20 years. Combining these results, we discuss the non-steady processes in debris disks and the zodiacal light.

FEM Numerical Formulation for Debris Flow (토석류 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.55-65
    • /
    • 2014
  • Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

Study on the Numerical Simulation of Debris Flow due to Heavy Rainfall (집중 강우에 따른 토석류 유출의 수치계산)

  • Kim, Jung-Han;Min, Sun-Hong;Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • In spite of many numerical analysis of debris flow, a little information has been found out. In this paper the watershed is divided to apply rainfall runoff and to estimate debris flow integrating flow and soil article. We use the contour data to extract spatially distributed topographical information like stream channels and networks of sub-basins. A Quasi Digital Elevation Model (Q-DEM) is developed, integrated, and adopted to estimate runoff based on marked one. As a results, it has been found out that the debris flow was close to observed flow hydrograph. Because debris flow is finished in 30 second, it is important that we have to prepare its prior countermeasure to minimize the damage of debris flow. The GIS-linked model will provide effective information to plan river works for debris flow.

  • PDF

Effects of the endodontic access cavity on apical debris extrusion during root canal preparation using different single-file systems

  • Tufenkci, Pelin;Yilmaz, Koray;Adiguzel, Mehmet
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.33.1-33.10
    • /
    • 2020
  • Objectives: This study was conducted to evaluate the effects of traditional and contracted endodontic cavity (TEC and CEC) preparation with the use of Reciproc Blue (RPC B) and One Curve (OC) single-file systems on the amount of apical debris extrusion in mandibular first molar root canals. Materials and Methods: Eighty extracted mandibular first molar teeth were randomly assigned to 4 groups (n = 20) according to the endodontic access cavity shape and the single file system used for root canal preparation (reciprocating motion with the RCP B and rotary motion with the OC): TEC-RPC B, TEC-OC, CEC-RPC B, and CEC-OC. The apically extruded debris during preparation was collected in Eppendorf tubes. The amount of extruded debris was quantified by subtracting the weight of the empty tubes from the weight of the Eppendorf tubes containing the debris. Data were analyzed using 1-way analysis of variance with the Tukey post hoc test. The level of significance was set at p < 0.05. Results: The CEC-RPC B group showed more apical debris extrusion than the TEC-OC and CEC-OC groups (p < 0.05). There were no statistically significant differences in the amount of apical debris extrusion among the TEC-OC, CEC-OC, and TEC-RPC B groups. Conclusions: RPC B caused more apical debris extrusion in the CEC groups than did the OC single-file system. Therefore, it is suggested that the RPC B file should be used carefully in teeth with a CEC.

Extracting the Distribution Potential Area of Debris Landform Using a Fuzzy Set Model (퍼지집합 모델을 이용한 암설지형 분포 가능지 추출 연구)

  • Wi, Nun-Sol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.77-91
    • /
    • 2017
  • Many debris landforms in the mountains of Korea have formed in the periglacial environment during the last glacial stage when the generation of sediments was active. Because these landforms are generally located on steep slopes and mostly covered by vegetation, however, it is difficult to observe and access them through field investigation. A scientific method is required to reduce the survey range before performing field investigation and to save time and cost. For this purpose, the use of remote sensing and GIS technologies is essential. This study has extracted the potential area of debris landform formation using a fuzzy set model as a mathematical data integration method. The first step was to obtain information about the location of debris landforms and their related factors. This information was verified through field observation and then used to build a database. In the second step, we conducted the fuzzy set modeling to generate a map, which classified the study area based on the possibility of debris formation. We then applied a cross-validation technique in order to evaluate the map. For a quantitative analysis, the calculated potential rate of debris formation was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). The prediction accuracy of the model was found to be 83.1%. We posit that the model is accurate and reliable enough to contribute to efficient field investigation and debris landform management.

Movements Simulation of Debris Flow for Prediction of Mountain Disasters Risk Zone (산지재해 위험구간 예측을 위한 토석류 흐름 모의)

  • Chae Yeon Oh;Kye Won Jun;Bae Dong Kang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2022
  • Recently, mountain disasters such as landslides and debris flows have flowed along mountain streams and hit residential areas and roads, increasing damage. In this study, in order to reduce damage and analyze causes of mountain disasters, field surveys and Terrestrial LiDAR terrain analysis were conducted targeting debris flow areas, and debris flow flow processes were simulated using FLO-2D and RAMM models, which are numerical models of debris flows. In addition, the debris flow deposition area was calculated and compared and analyzed with the actual occurrence section. The sedimentation area of the debris flow generation section of the LiDAR scan data was estimated to be approximately 21,336 ㎡, and was analyzed to be 20,425 ㎡ in the FLO-2D simulation and 19,275 ㎡ in the case of the RAMMS model. The constructed topographical data can be used as basic data to secure the safety of disaster risk areas.

Phase analysis of simulated nuclear fuel debris synthesized using UO2, Zr, and stainless steel and leaching behavior of the fission products and matrix elements

  • Ryutaro Tonna;Takayuki Sasaki;Yuji Kodama;Taishi Kobayashi;Daisuke Akiyama;Akira Kirishima;Nobuaki Sato;Yuta Kumagai;Ryoji Kusaka;Masayuki Watanabe
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1300-1309
    • /
    • 2023
  • Simulated debris was synthesized using UO2, Zr, and stainless steel and a heat treatment method under inert or oxidizing conditions. The primary U solid phase of the debris synthesized at 1473 K under inert conditions was UO2, whereas a (U, Zr)O2 solid solution formed at 1873 K. Under oxidizing conditions, a mixture of U3O8 and (Fe, Cr)UO4 phases formed at 1473 K, whereas a (U, Zr)O2+x solid solution formed at 1873 K. The leaching behavior of the fission products from the simulated debris was evaluated using two methods: the irradiation method, for which fission products were produced via neutron irradiation, and the doping method, for which trace amounts of non-radioactive elements were doped into the debris. The dissolution behavior of U depended on the properties of the debris and aqueous solution for immersion. Cs, Sr, and Ba leached out regardless of the primary solid phases. The leaching of high-valence Eu and Ru ions was suppressed, possibly owing to their solid-solution reaction with or incorporation into the uranium compounds of the simulated debris.

A Study on Numerical Analysis for Debris Flow considering the Application of Debris Flow Mitigation Facilities (토석류 저감시설 적용에 따른 토석류 수치해석에 관한 연구)

  • Bae Dong Kang;Jung Soo An;Kye Won Jun;Chang Deok Jang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.33-43
    • /
    • 2023
  • The impact of prolonged rainfall, such as during the monsoon season or intense concentrated rainfall over a short period, can lead to mountainous disasters such as landslides and debris flows. These events, such as landslides and debris flows, cause both human and material damage, prompting the implementation of various measures and research to prevent them. In the context of researching debris flow disasters, numerical models for debris flows provide a relatively simple way to analyze the risk in a study area. However, since empirical equations are applied in these models, yielding different results and variations in input variables across models, the validation of numerical models becomes essential. In this study, a numerical model for debris flows was employed to compare and analyze the mitigation effects of facilities such as check dams and water channel work, aiming to reduce the damage caused by debris flows.

Seepage and Slope Stability Analysis on the Site of Debris-flow at Jinbu Area (진부지역 토석류발생 사면에 대한 침투 및 사면안정 연계해석)

  • Jun, Kyoung-Jea;Yune, Chan-Young;Seo, Heung-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.369-376
    • /
    • 2009
  • Field investigation was performed right after the occurrence of debris flow at Jinbu area. Geomorphic and geotechnical characteristics were investigated and rain fall data were collected. Based on these data, seepage and slope stability analysis was performed to verify the behavior of ground water and factor of safety of the slope according to the rainfall intensity and time. As a results, the minimum value of factor of safety achieved in long time after the moment of maximum precipitation rate. And it is confirmed that the factor of safety is susceptible to ground water level rather than rainfall intensity.

  • PDF