• Title/Summary/Keyword: Death receptor 5

Search Result 139, Processing Time 0.025 seconds

Effects of Arsenic Trioxide Alone and in Combination with Bortezomib in Multiple Myeloma RPMI 8266 Cells

  • Elmahi, Aadil Yousif;Niu, Chao;Li, Wei;Li, Dan;Wang, Guan-Jun;Hao, Shan-Shan;Cui, Jiu-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6469-6473
    • /
    • 2013
  • The aim of this study was to detect the efficiency of arsenic trioxide (ATO) alone or together with bortezomib to inhibit proliferation and induce apoptosis in a multiple myeloma (MM) RPMI 8266 cells. Mechanisms of action were also investigated. RPMI 8266 cells were treated with ATO alone and in combination with bortezomib for 24 hours, and cell viability was assessed by modified MTT. Annexin V-F1TC and PI staining was used to detect the apoptosis rate and cell cycling was investigated by flow cytometry, along with expression of cell surface death receptor-4(DR4) and death receptor-5 (DR5). Western blotting was applied to detect the expression of bcl-2, caspase-3, caspase-8, and caspase-9. As a result, the ATO combined with bortezomib group showed more inhibition of RPMI 8266 cell viability than theATO group. Expression of DR4 and DR5 on the cell surfaces, and the apoptosis rate were increased after treatment by ATO alone or combined with bortezomib. The cells appeared to arrest in G2/M phase after treatment. Expression of bcl-2 was more significantly decreased in the combination group, and that of caspase-3, caspase-8 and caspase-9 was significantly increased as well. Therefore, bortezomib can enhance ATO actions to induce apoptosis in RPMI 8266 cells, with decrease in expression of bcl-2 and increase of caspase-3, caspase-8 and caspase-9 proteins.

Sensitization of TRAIL-resistant SK-Hep1 Human Hepatocellular Carcinoma Cells by Luteolin (SK-Hep1 인체 간암 세포에서 Luteolin에 의한 TRAIL 저항성 감소 효과)

  • Kim, Eun-Young;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • In this study, we examined the effect of luteolin to enhance TRAIL-induced anticancer effect in SK-Hep1 cells. We found that combined use of TRAIL with luteolin markedly enhanced the cytotoxicity compared to either agent alone by inducing apoptosis. Furthermore, combined treatment of TRAIL with luteolin significantly induced activation of death receptor pathway-related proteins as well as PARP-cleavage and activation of effector caspases. Also, our result indicated that upregulation of DR4 and DR5 by luteolin combination may contribute to enhanced susceptibility of SK-Hep1 cells to TRAIL.

The effect of herbal medicine on cultured cerebral cortical neurons induced by glutamate neurotoxicity (대뇌피질 신경세포에 미치는 glutamate 독성에 대한 한약재 효능연구)

  • Lee, Mi-Young;Kang, Bong-Joo;Yoon, Yoo-Sik;Hong, Seong-Gil;Gwag, Byoung-Joo;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.4 no.1 s.4
    • /
    • pp.99-114
    • /
    • 1998
  • The effect of herbal medicine on glutamate mediated neurotoxicity was studied in mouse neurons in primary culture. Immature cerebral cortex neurons (ED14) were maintained for up to 2 weeks in vitro, and we investigated the expression pattern of neuron differentiation and cytotoxicity of cell death, including LDH activity. Neuronal maturation initiated on day 7 and the susceptibility to glutamate-induced cell death was highly sensitive on Day 11 (Fig. 1). Thus, the exposure of the neurons to glutamate caused a dose$(0.1mM{\sim}1mM)$ and time$(4h{\sim}24h)$-dependent neurotoxicity(Fig. 4). Glutamate-induced neurodegeneration was prevented by Shipchondaebotang(SD), Yollyounggobondan(YG), Yugmijihwangwon(YJ) and the death of neurons exposed to glutamate was blocked by the NMDA receptor antagonist MK-801 (Fig. 5).

  • PDF

Apoptotic Killing of Breast Cancer Cells by IgYs Produced Against a Small 21 Aminoacid Epitope of the Human TRAIL-2 Receptor

  • Amirijavid, Shaghayegh;Entezari, Maliheh;Movafagh, Abolfazl;Hashemi, Mehrdad;Mosavi-Jarahi, Alireza;Dehghani, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.293-297
    • /
    • 2016
  • TRAIL, tumor necrosis factor (TNF)-related apoptosis-inducing ligand belongs to one of important cytokine superfamilIES, tumor necrosis factor ($TNF{\alpha}$). TRAIL-2 receptor agonists activate several cell signaling pathways in cells in different manners and could lead to apoptosis or necrosis. Agonistic egg yolk antibodies like IgY which have been developed in a selective manner could activate TRAIL death receptors such as TRAIL-2 (DR5) and thus apoptosis signaling. We here investigated induction of apoptosis in human breast cancer cells (MCF7 cell line) by an IgY produced against an 21 aminoacid epitope of the human TRAIL-2 receptor. As the first step a small peptide of 21 aminoacids choosen from the extracellular domain of DR5 protein was produced with a peptide synthesizer. After control assays and confirmation of the correct amino acid sequence, it was injected to hens immunized to achieve high affinity IgYs. At the next step, the produced IgYs were extracted and examined for specificity against DR5 protein by ELISA assay. Subsequently, the anticancer effect of such IgYs was determined by MTT assay in the MCF7 human breast cancer cell line. The produced peptides successfully immunized hens and the produced antibodies which accumulated in egg yolk specifically recognized the DR5 protein. IgYs exerted significant toxicity and killed MCF7 cells as shown by MTT assay.

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.

Apoptotic activity of demethoxycurcumin in MG-63 human osteosarcoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Demethoxycurcumin (DMC), which is a curcuminoid found in turmeric, has anti-proliferative effects on cancer cells. However, the effect of DMC on osteosarcoma has not been established. The aim of this study was to examine the effects of DMC on cell growth and apoptosis induction in MG-63 human osteosarcoma cells. This study was investigated using 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromid assay, Live/Dead cell assay, 4', 6-diamidino-2-phenylindole staining, and immunoblotting in MG-63 cells. DMC induced MG-63 cell death in a dose-dependent manner, with an estimated IC50 value of 54.4 µM. DMC treatment resulted in nuclear condensation in MG-63 cells. DMC-induced apoptosis in MG-63 cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting results showed that Bcl-2 and Bcl-xL were downregulated, while Bax and Bad were upregulated by DMC in MG-63 cells. These results indicated that DMC inhibits cell proliferation and induces apoptotic cell death in MG-63 human osteosarcoma cells via the death receptor-mediated extrinsic apoptotic pathway and mitochondria-mediated intrinsic apoptotic pathway.

Overexpression of HER-2/neu in Patients with Prostatic Adenocarcinoma

  • Zahir, Shokouh Taghipour;Tafti, Hamid Fallah;Rahmani, Koorosh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6425-6428
    • /
    • 2014
  • Background: Prostatic adenocarcinoma is one of the main causes of cancer death, and its timely diagnosis and preventing its progression dramatically helps improve life indexes. Given the high disease recurrence rate, today, research is more inclined toward exploring causes of recurrence and development, and innovation of modern treatment methods. Several studies have explored over-expression of human epidermal growth factor receptor 2 (HER-2/neu) in prostatic cancer so far, with different results. Thus, it was decided to investigate HER-2/neu overexpression in patients with prostatic adenocarcinoma in Iran. Materials and Methods: A sample size of 40 patients with prostate cancer entered the study, using a cross-sectional, non-randomized sampling method. Parameters studied included patient age at surgery, Gleason score, serum prostatic specific antigen (PSA) before surgery, and positive sample rate after immunohistochemical staining to investigate HER-2/neu overexpression. Results: In terms of HER-2/neu receptor staining rate, of 40 slides, 16 (40%) scored 0, 13 (32.5%) 1+, 7 (17.5%) 2+, and 4 (10%) 3+. In total 27.5% of slides showed HER-2/neu overexpression. In terms of age, an inverse correlation was found (-0.181), but without significance (p=0.263). In terms of serum PSA, the correlation coefficient was 0.449 (p=0.004). With respect to Gleason score, the coefficient was 0.190 (p=0.240). Conclusions: In this study, HER-2/neu overexpression occurred in 27.5% of prostate cancer cases, which is a relatively high figure, compared to similar studies elsewhere. While, we failed to reveal any relationship between HER-2/neu expression status with progression and prognosis of disease, it was demonstrated that the serum PSA level was significantly higher in cases with increased receptor expression.

Distinct Cellular Calcium Metabolism in Radiation-sensitive RKO Human Colorectal Cancer Cells

  • Kim, Yun Tai;Jo, Soo Shin;Park, Young Jun;Lee, Myung Za;Suh, Chang Kook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.509-516
    • /
    • 2014
  • Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive $Ca^{2+}$ release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of $Ca^{2+}$ homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular $Ca^{2+}$ metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (${\gamma}$)-irradiation. In irradiated RKO cells, $Ca^{2+}$ influx via activation of NCX reverse mode was enhanced and a decline of $[Ca^{2+}]_i$ via forward mode was accelerated. The amount of $Ca^{2+}$ released from the ER in RKO cells by the activation of $IP_3$ receptor was also enhanced by irradiation. An increase in $[Ca^{2+}]_i$ via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that ${\gamma}$-irradiation elicits enhancement of cellular $Ca^{2+}$ metabolism in radiation-sensitive RKO cells yielding programmed cell death.

Search for Plant Extracts with Protective Effects of Pancreatic Beta Cell against Oxidative Stress (산화적 스트레스에 대한 췌장 베타 세포 보호활성 식물추출물 탐색)

  • Lee, Dong-Sung;Jeong, Gil-Saeng;An, Ren-Bo;Li, Bin;Byun, Erisa;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.335-340
    • /
    • 2008
  • Diabetes mellitus is metabolic disorder characterized by hyperglycemia caused by insufficient insulin secretion or insulin receptor insensitivity to endogenous insulin. It is well-known that hyperglycemia is one of the main causes of oxidative stress in both type 1 and 2 diabetes. Oxidative stress is related by death of pancreatic ${\beta}$ cell and dysfunction of ${\beta}$ cell. Although ${\beta}$ cell death or dysfunction is induced by many substances or molecules, increased evidences that oxidative stress plays a crucial role in ${\beta}$ cell death or dysfunction. Considering the importance of oxidative stress in the pathogenesis of diabetes mellitus, we investigated the cytoprotective effects against hydrogen peroxide-induced oxidative stress in pancreatic ${\beta}$ cell line RIN-m5F cell. 110 Plant sources were collected in Mt. Baek-du, and extracted with methanol. These extracts had been screened the protective effects against hydrogen peroxide-induced oxidative damage in RIN-m5F cells at 50 and 200 ${\mu}g$/ml. Of these, ten methanolic extracts, aerial part of Erigenron cannadensis, aerial part of Lespedeza juncea, whole plant of Alopecurus aequalis, fruit of Lycium chinense, leaf of Morus alba, rhizome of Polygonatum odoratum, root of Ampelosis japonica, whole plant of Ranunculus japonicus, aerial part of Polygonum sieboldii, rhizome of Arisaema amurense var. violaceum showed significant protective effects against hydrogen peroxide-induced oxidative damage in pancreatic ${\beta}$ cell line RIN-m5F cell.

Extracellular ATP Induces Apoptotic Signaling in Human Monocyte Leukemic Cells, HL-60 and F-36P

  • Yoon, Mi-Jung;Lee, Hae-Jin;Kim, Jae-Hwan;Kim, Dong-Ku
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1032-1041
    • /
    • 2006
  • Extracellular adenosine 5'-triphosphate (ATP) affects the function of many tissues and cells. To confirm the biological activity of ATP on human myeloid leukemic cells, F-36P and HL-60, cells were treated with a variety of concentrations of ATP. The stimulation with extracellular ATP induced the arrest of cell proliferation and cell death. from the analysis of Annexin-V staining and caspase activity by flow cytometry. The Annexin-V positive cells in both cell lines were dramatically increased following ATP stimulation. The expression of P2 purinergic receptor genes was confirmed, such as P2X1, P2X4, P2X5, P2X7 and P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y11 in both leukemic cell lines. Interestingly, ATP induced intracellular calcium flux in HL-60 cells but not in F-36P cells, as determined by Fluo-3 AM staining. Cell cycle analysis revealed that ATP treatment arrested both F-36P and HL-60 cells at G1/G0. Taken together, these data showed that extracellular ATP via P2 receptor genes was involved in the cell proliferation and survival in human myeloid leukemic cells, HL-60 and F-36P cells by the induction of apoptosis and control of cell cycle. Our data suggest that treatment with extracellular nucleotides may be a novel and powerful therapeutic avenue for myeloid leukemic disease.